精英家教网 > 初中数学 > 题目详情
14.已知:如图,D是△ABC中BC边上一点,且AD⊥BC,E是AD上的一点,EB=EC,求证:∠BAE=∠CAE.

分析 由HL证明Rt△BDE≌Rt△CDE,得出BD=CD,由线段垂直平分线的性质得出AB=AC,再由等腰三角形的三线合一性质即可得出结论.

解答 证明:∵AD⊥BC,
∴∠EDB=∠EDC=90°,
即△BDE和△CDE是直角三角形,
在Rt△BDE和Rt△CDE中,$\left\{\begin{array}{l}{EB=EC}\\{DE=DE}\end{array}\right.$,
∴Rt△BDE≌Rt△CDE(HL),
∴BD=CD,
∵AD⊥BC,
∴AB=AC,
∴∠BAE=∠CAE.

点评 本题考查了全等三角形的判定与性质、线段垂直平分线的性质、等腰三角形的性质;熟练掌握等腰三角形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,将三角形ABC沿射线BC的方向平移到三角形A′B′C′的位置,AC与A′B′相交于点M,请找出一对面积相等的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知抛物线的C1顶点为E(-1,4),与y轴交于C(0,3).
(1)求抛物线C1的解析式;
(2)如图1,过顶点E作EF⊥x轴于F点,交直线AC于D,点P、Q分别在抛物线C1和x轴上,若Q为(t,0),且以E、D、P、Q为顶点的四边形为平行四边形,求t的值;
(3)如图2,将抛物线C1向右平移一个单位得到抛物线C2,直线y=kx+6与y轴交于点H,与抛物线C2交于M、N两个不同点,分别过M、N两点作y轴的垂线,垂足分别为P、Q,当k的值在取值范围内发生变化时,式子$\frac{1}{HP}$+$\frac{1}{HQ}$的值是否发生变化?若不变,请求其值.(解此题时不用相似知识)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,点A,B,C,D在同一直线上,AB=CD,AE∥CF且AE=CF,求证:BE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:如图,四边形ABCD中,AB=AD,CB=CD,B0平分∠ABC交AC于点O,求证:OD平分∠ADC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:在平面直角坐标系中.放入一块等腰直角三角板ABC,∠BAC=90°,AB=AC,A点的坐标为(0,2),B点的坐标为(4.0).
(1)求C点的坐标;
(2)D为△ABC内-点(AD>2),连AD.并以AD为边作等腰直角三角形ADE,∠DAE=90°,AD=AE.连CD、BE,试判断线段CD、BE的位置及数量关系,并给出你的证明;
(3)旋转△ADE,使D点刚好落在x轴的负半轴,连CE交y轴于M.求证:①EM=CM;②BD=2AM.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.一服装店主进了一款式新颖的童装,进价每件a元(a>0),他按50%的利润标出售价,不久就卖了这批童装的一半;后来,他见销路不好,立即在店门上贴出“亏本大处理-5折”即按原售价打5折,他很快卖完了这批童装.那么,这位店主从这批童装获取的利润率是(  )
A.-50%B.0%C.12.5%D.15%

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.问题情境:已知矩形ABCD中,AD=8,AB=6,点E是线段BC上的一个动点,连接AE,并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B′处,延长AB′,交直线CD于点M.
自主探究:
(1)当$\frac{BE}{CE}$=1时,得到图1,求CF的长并求证:AM=FM.
(2)当点B′恰好落在对角线AC上时,得到图2,此时CF的长为10,$\frac{BE}{CE}$=$\frac{3}{5}$.当$\frac{BE}{CE}$=2时,借助备用图直接写出MF的长为$\frac{145}{18}$.
拓展运用:
(3)设变量BE为x,△ABE沿直线AE翻折后与矩形ABCD重合部分的面积为y,求y与x之间的关系式并直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,以点A为圆心处有一个半径为0.7km的圆形森林公园,在森林公园附近有B、C两个村庄,现要在B、C两村庄之间修一条长为2km的笔直公路,将两村连通.经测得,∠ABC=45°,∠ACB=30°,问此公路是否会穿过该森林公园.请通过计算说明理由.

查看答案和解析>>

同步练习册答案