精英家教网 > 初中数学 > 题目详情
19.化简:$\sqrt{{{(-2)}^2}}$=2,$\root{3}{125}$=5,$\sqrt{\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$.

分析 利用立方根,算术平方根的定义解答即可.

解答 解:$\sqrt{{(-2)}^{2}}$=2;
$\root{3}{125}$=5;
$\sqrt{\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$,
故答案为:2;5;$\frac{\sqrt{2}}{2}$.

点评 本题主要考查了立方根,算术平方根的定义,熟练掌握定义是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.若$\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$是二元一次方程组$\left\{\begin{array}{l}\frac{3}{2}ax+by=5\\ ax-by=2\end{array}\right.$的解,则a+2b的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程:
(1)x2+2x-8=0;
(2)2x2+4x-1=0;
(3)(x-1)(x+3)=12;
(4)(x-1)2=(2x+3)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知x+5与x-k的乘积中不含x项,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,点A在函数y=$\frac{4}{x}$(x>0)图象上,过点A作x轴和y轴的平行线分别交函数y=$\frac{1}{x}$图象于点B、C,直线BC与坐标轴的交点为D、E.当点A在函数y=$\frac{4}{x}$(x>0)图象上运动时,
(1)设点A横坐标为a,则点B的坐标为($\frac{1}{4}$a,$\frac{4}{a}$),点C的坐标为C(a,$\frac{1}{a}$)(用含a的字母表示);
(2)△ABC的面积是否发生变化?若不变,求出△ABC的面积,若变化,请说明理由;
(3)请直接写出BD与CE满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.我市某中学今年年初开学后打算招聘一名数学老师,对三名前来应聘的数学老师A、B、C进行了考核,他们的笔试成绩和说课成绩(单位:分)分别用了两种方式进行了统计,如表和图1,
ABC
笔试859590
说课908085

(1)请将表和图1的空缺部分补充完整;
(2)应聘的最后一个程序是由该校的24名数学教师进行投票,三位应聘者的得票情况如图2(没有弃权票,该校的每位教师只能选一位应聘教师),请计算每人的得票数(得票数可是整数哟)
(3)若每票计1分,该校将笔试、说课、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位应聘者的最后成绩,并根据成绩判断谁能应聘成功.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在△ABC中,AB=AC,作AB的垂直平分线DE分别交AB,AC于点D,E,连接BE,则:
(1)若AC=12,BC=10,则△EBC的周长为22.
(2)若AC=12,△EBC的周长为26,则BC=14.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,将边长为4的正方形OABC置于平面直角坐标系中,点P在边OA上从O向A运动,连接CP交对角线OB于点Q,连接AQ.
(l)求证:△OCQ≌△OAQ;
(2)当点Q的坐标为($\frac{4}{3}$,$\frac{4}{3}$)时,求点P的坐标;
(3)若点P在边OA上从点O运动到点A后,再继续在边AB上从A运动到点B,在整个过运动过程中,若△OCQ恰为等腰三角形,请直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:
①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=122.5°;④BC+FG=$\sqrt{2}$
其中正确的结论是①②④(填写所有正确结论的序号)

查看答案和解析>>

同步练习册答案