精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,ABADAC6,∠DAB=∠DCB90°,则四边形ABCD的面积为_____

【答案】18

【解析】

根据已知线段关系,将ACD绕点A逆时针旋转90°ADAB重合,得到ABE,证明CBE三点共线,则ACE是等腰直角三角形,四边形面积转化为ACE面积.

ADAD,且∠DAB90°

∴将ACD绕点A逆时针旋转90°ADAB重合,得到ABE

∴∠ABE=∠DACAE

根据四边形内角和360°,可得∠D+ABC180°

∴∠ABE+ABC180°

CBE三点共线.

∴△ACE是等腰直角三角形.

∵四边形ABCD面积=ACE面积=×AC2×6218

故答案为:18

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购买元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券元.

(1)求每转动一次转盘所获购物券金额的平均数;

(2)如果你在该商场消费元,你会选择转转盘还是直接获得购物券?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点ABC,请在网格中进行下列操作:

1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为   

2)连接ADCD,求⊙D的半径及扇形DAC的圆心角度数;

3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地相距40km,甲、乙两人沿同一路线从A地到B地,甲骑自行车先出发,1.5h后乙乘坐公共汽车出发,两人匀速行驶的路程与时间的关系如图所示.

1)求甲、乙两人的速度;

2)若乙到达B地后,立即以原速返回A地.

①在图中画出乙返程中距离A地的路程ykm)与时间xh)的函数图象,并求出此时yx的函数表达式;

②求甲在离B地多远处与返程中的乙相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人共同计算一道整式:(x+a)(2x+b),由于甲抄错了a的符号,得到的结果是2x2-7x+3,乙漏抄了第二个多项式中x的系数,得到的结果是x2+2x-3

1)求ab的值;(2)请计算这道题的正确结果

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙OC的中点,BC=,OAB的距离为1,则半径的长(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P出发,沿所示方向运动,每当碰到长方形OABC的边时会进行反弹,反弹时反射角等于入射角,当点P2018次碰到长方形的边时,点P的坐标为______

【答案】

【解析】

根据反射角与入射角的定义作出图形;由图可知,每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.

解:如图所示:经过6次反弹后动点回到出发点

当点P2018次碰到矩形的边时为第337个循环组的第2次反弹,

P的坐标为

故答案为:

【点睛】

此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.

型】填空
束】
15

【题目】为了保护环境,某公交公司决定购买AB两种型号的全新混合动力公交车共10辆,其中A种型号每辆价格为a万元,每年节省油量为万升;B种型号每辆价格为b万元,每年节省油量为万升:经调查,购买一辆A型车比购买一辆B型车多20万元,购买2A型车比购买3B型车少60万元.

请求出ab

若购买这批混合动力公交车每年能节省万升汽油,求购买这批混合动力公交车需要多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,直线分别交x轴、y轴于AB两点(AOAB)且AOAB的长分别是一元二次方程x23x20的两个根,点Cx轴负半轴上,且ABAC=1:2.

1)求AC两点的坐标;

2)若点MC点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;

3)点Py轴上的点,在坐标平面内是否存在点Q,使以ABPQ为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y1=ax2+bx+ca≠0)图象的一部分,抛物线的顶点坐标A13),与x轴的一个交点B40),直线y2=mx+nm≠0)与抛物线交于AB两点,下列结论:

①2a+b=0②abc0方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(﹣10);1x4时,有y2y1

其中正确的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

同步练习册答案