【题目】如图,已知AB=AC,∠A=36°,AB的中垂线交AC于点E,交AB于点D,下面4个结论:
①射线BE是∠ABC的平分线;②△BCE是等腰三角形;③△ABE是等腰三角形;④△ADE≌△BDE;
(1)判断其中正确的结论是哪几个?
(2)从你认为是正确的结论中选一个加以说明.
【答案】(1) ①②③④;(2)证明见解析.
【解析】试题分析:(1)利用垂直平分线到两端点距离相等,证明③正确,再证明④中三角形全等,利用等腰三角形底角相等,说明∠ABE=∠CBE, ①正确,所以②△BCE是等腰三角形.①②③④均正确.(2)同(1)
试题解析:
(1) AB的中垂线交AC于点E,
AE=BE,
△ABE是等腰三角形, ③正确.
AD=AD,AE=BE,∠ADE=∠BDE,
△ADE≌△BDE,④正确.
AB=AC,∠A=36°,
∠C=72°.∠EBC=36°,
射线BE是∠ABC的平分线①正确.
∠BEC=72°.
△BCE是等腰三角形,②正确.
①②③④都正确.
(2)证明见(1)详解.
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2
(1)求实数k的取值范围。
(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.
【答案】证明见解析.
【解析】试题分析:欲证明AB=DE,只要证明△ABC≌△DEF即可.
试题解析:∵AF=CD,
∴AC=DF,
∵BC∥EF,
∴∠ACB=∠DFE,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA),
∴AB=DE.
考点:全等三角形的判定与性质.
【题型】解答题
【结束】
25
【题目】如图, ,AE=BD,点D在AC边上, ,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若,求BDE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李老师做了个长方形教具,其中一边长为2a+b,另一边长为a﹣b,则该长方形的面积为( )
A.6a+b
B.2a2﹣ab﹣b2
C.3a
D.10a﹣b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(2,0),直线y=(2-)x-2与x轴交于点F,与y轴交于点B,直线l∥AB且交y轴于点C,交x轴于点D,点A关于直线l的对称点为A′,连接AA′、A′D.直线l从AB出发,以每秒1个单位的速度沿y轴正方向向上平移,设移动时间为t.
(1)求点A′ 的坐标(用含t的代数式表示);
(2)求证:AB=AF;
(3)过点C作直线AB的垂线交直线y=(2-)x-2于点E,以点C为圆心CE为半径作⊙C,求当t为何值时,⊙C与△AA′D三边所在直线相切?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com