精英家教网 > 初中数学 > 题目详情
已知:如图,在直角坐标系中,⊙O1经过坐标原点,分别与x轴正半轴、y轴正半轴交于点A、B.
(1)若点O到直线AB的距离为
12
5
,且tan∠B=
3
4
,求线段AB的长;
(2)若点O到直线AB的距离为
12
5
,过点A的切线与y轴交于点C,过点O的切线交AC于点D,过点B的切线交OD于点E,求
1
CD
+
1
BE
的值;
(3)如图,若⊙O1经过点M(2,2),设△BOA的内切圆的直径为精英家教网d,试判断d+AB的值是否会发生变化,若不变,求出其值;若变化,求其变化的范围.
分析:(1)已知点O到直线AB的距离为
12
5
,且tan∠B=
3
4
,从O点作AB的垂线,利用三角函数关系求出OA、OB和OB的关系,利用△AOB的面积公式可求出AB的长度;
(2)延长BE交x轴于点F,过点O作OG⊥AB于点G,∵DO=DA,∴∠DOA=∠DAO,∴∠COD=∠DCO,DO=DA=DC,同理可证:EB=EO=EF,根据平行线段成比例的原理,可以求出结果.
解答:解:(1)作OG⊥AB,垂足为点G,
∵tan∠B=
3
4
,设OA=3k,OB=4k,
∴AB=5k,(1分)
∵OA•OB=AB•OG=2S△AOB,即3k×4k=5k×
12
5
,∴k=1,(3分)
∴AB=5;(4分)
精英家教网

(2)延长BE交x轴于点F,过点O作OG⊥AB于点G,
∵DO=DA,
∴∠DOA=∠DAO,
∴∠COD=∠DCO,DO=DA=DC,同理可证:EB=EO=EF,(5分)
又∵AC∥OG∥BF,
OG
2CD
=
OG
AC
=
BG
BA
,∴
OG
2BE
=
OG
BF
=
AG
AB

OG
2CD
+
OG
2BE
=
BG+AG
AB
=1

1
CD
+
1
BE
=
2
OG
,(8分)
OG=
OA×OB
AB
=
12
5
,∴
1
CD
+
1
BE
=
5
6
;(9分)

(3)d+AB的值不会发生变化.
设△AOB的内切圆分别切OA、OB、AB于点P、Q、T,则d+AB=OQ+OP+QB+PA=OA+OB,
在x轴上取一点N,使AN=OB,连接OM、BM、AM、MN,
∵OM平分∠AOB,
∴∠BOM=∠MON=45°,AM=BM;
又∵∠MAN=∠OBM,OB=AN,
∴△BOM≌△ANM,(12分)
∴∠BOM=∠N=45°,
∴∠OMN=90°,
∴OA+OB=ON=
OM2+MN2
=
2
OM=4,
∴d+AB的值不会发生变化,其值为4.(14分)
点评:解题的关键要熟练掌握坐标的有关知识,利用图形结合来解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比例函数y=
k
x
的图象的一个分支位于第一象限.
(1)求点A的坐标;
(2)若矩形ABDC从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数y=
k
x
的图象的图象上,求k的值;
(3)矩形ABCD继续向x轴的正方向移动,AB、AC与反比例函数图象分别交于P、Q如图(2),设移动的总时间为t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t的函数关系式;
(4)在(3)的情况下,当t为何值时,S2=
10
7
S1

查看答案和解析>>

科目:初中数学 来源:2011-2012学年甘肃省兰州四中九年级(上)期中数学试卷(解析版) 题型:解答题

如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比例函数y=的图象的一个分支位于第一象限.
(1)求点A的坐标;
(2)若矩形ABDC从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数y=的图象的图象上,求k的值;
(3)矩形ABCD继续向x轴的正方向移动,AB、AC与反比例函数图象分别交于P、Q如图(2),设移动的总时间为t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t的函数关系式;
(4)在(3)的情况下,当t为何值时,S2=S1

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(四川巴中卷)数学(解析版) 题型:解答题

如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,

与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐

标为2,

(1)求一次函数和反比例函数的解析式;

(2)直接写出时x的取值范围。

 

查看答案和解析>>

科目:初中数学 来源:2013届安徽滁州八年级下期末模拟数学试卷(沪科版)(解析版) 题型:解答题

已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐

标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-交折线O-A-B于点E.

(1)在点D运动的过程中,若△ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;

(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;

(3)问题(2)中的四边形DMEN中,ME的长为____________.

    

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(广西钦州卷)数学 题型:解答题

(本题满分8分)已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.

    (1)如图①,当PA的长度等于 

时,∠PAB=60°;

              当PA的长度等于    时,△PAD是等腰三角形;

    (2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角

坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐

标为(ab),试求2 S1 S3-S22的最大值,并求出此时ab的值.

 

查看答案和解析>>

同步练习册答案