精英家教网 > 初中数学 > 题目详情
已知,如图,CD是Rt△FBE的中位线,A是EB延长线上一点,AD∥BC.
(1)证明四边形ABCD是平行四边形.
(2)若AD=3cm,求EF的长.
分析:(1)由于CD是Rt△FBE的中位线,根据三角形中位线定理可知CD∥AE,而AD∥BC,根据平行四边形的定义可知四边形ABCD是平行四边形;
(2)由于四边形ABCD是平行四边形,那么BC=AD=3,而BC是Rt△FBE斜边EF上的中线,根据直角三角形斜边上的中线等于斜边的一半,易求EF.
解答:证明:(1)∵CD是Rt△FBE的中位线,
∴CD∥AE,
又∵AD∥BC,
∴四边形ABCD是平行四边形;

(2)∵四边形ABCD是平行四边形,
∴BC=AD=3cm,
在Rt△FBE中,BC是斜边EF上的中线,
∴EF=2BC=6cm.
点评:本题考查了三角形中位线定理、直角三角形斜边上的中线的性质、平行四边形的判定和性质,解题的关键是证明四边形ABCD是平行四边形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,CD是⊙O的直径,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,OA=10,则AB=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

1、已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则∠DBE=
55
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,CD是△ABC的高,AC=4,BC=3,DB=
95

(1)求AD的长;
(2)△ABC是直角三角形吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•河北区一模)已知,如图,CD是⊙O的直径,BC是⊙O的切线,切点为C,BC=
3
,BF=
1
2
,AE:EF=8:3
求:ED的长.

查看答案和解析>>

同步练习册答案