【题目】如图,AB为⊙O的直径,C、D是半圆AB的三等分点,过点C作AD延长线的垂线CE,垂足为E.
(1)求证:CE是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
(3)若弦CN过△ABC的内心点M,MN=,求CN.
【答案】(1)证明见解析;(2) ;(3)CN=.
【解析】
(1)由已知条件得出,由圆周角定理得出∠BOC=∠A,证出OC∥AD,再由已知条件得出CE⊥OC,即可证出CE为⊙O的切线;
(2)连接OD,OC,由,得到∠COD=×180°=60°,根据CD∥AB,得到S△ACD=S△COD,根据扇形的面积公式即可得到结论.
(3)过点B作BP⊥CN,证明△MCB∽△BCN,得,代入相关数据即可得解.
证明:(1)如图1,连接OD,OC,
∵点C、D为半圆O的三等分点,
∴,
∴∠BOC=∠BAE,
∴OC∥AD,
∵CE⊥AD,
∴CE⊥OC,
∴CE为⊙O的切线;
(2)∵,
∴∠COD=×180°=60°,
∵CD∥AB,
∴S△ACD=S△COD,
∴图中阴影部分的面积=S扇形COD==;
(3)如图2,过点B作BP⊥CN,
∵点M是△ACB的内心,
∴∠ACN=∠BCN=45°,∠CBM=∠ABC=30°,
∵BP⊥CN,
∴∠NCB=∠CBP=45°,
∴CP=BP=BC,
∵∠CAB=∠CNB=30°,
∴PN=PB=BC,
∴CN=PN+CP=BC,
∵∠CBM=∠CNB=30°,∠MCB=∠NCB,
∴△MCB∽△BCN,
∴,
∴BC2=BC×(BC﹣2),
∴BC=2,
∴CN=×2=.
科目:初中数学 来源: 题型:
【题目】万州区初中数学教研工作坊到重庆某中学开展研讨活动,先后乘坐甲、乙两辆汽车从万州出发前往相距250千米的重庆,乙车先出发匀速行驶,一段时间后,甲车出发匀速追赶,途中因油料不足,甲到服务区加油花了6分钟,为了尽快追上乙车,甲车提高速度仍保持匀速行驶,追上乙车后继续保持这一速度直到重庆,如图是甲、乙两车之间的距离s(km),乙车出发时间t(h)之间的函数关系图象,则甲车从万州出发到重庆共花费了_____小时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴相交于点、点,与轴交于点,点是抛物线上一动点, 联结交线段于点.
(1)求这条抛物线的解析式,并写出顶点坐标;
(2)求的正切值;
(3)当与相似时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线过A(1,0)、B(﹣3,0),C(0,﹣3)三点,直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点,过点P的直线垂直于x轴,交抛物线于点Q.
(1)求直线AD及抛物线的解析式;
(2)求线段PQ的长度l与m的关系式,m为何值时,PQ最长?
(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,求出点R的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.
(1)m= %,这次共抽取了 名学生进行调查;并补全条形图;
(2)请你估计该校约有 名学生喜爱打篮球;
(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形中,的平分线交于点E,交的延长线于F,以为邻边作平行四边形。
(1)证明平行四边形是菱形;
(2)若,连结,①求证:;②求的度数;
(3)若,,,M是的中点,求的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.
(1)求证:△BDG∽△DEG;
(2)若EGBG=4,求BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com