精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中.正方形OABC的边长是4,点A、C分别在y轴、x轴的正半轴上,动点P从点A开始,以每秒2个单位长度的速度在线段AB上来回运动.动点Q从点B开始沿B→C→O的方向.以每秒1个单位长度的速度向点O运动.P、Q两点同时出发,当点Q到达点O时,P、Q两点间时停止运动.设运动时间为t.△OPQ的面积为S.
(I)当t=1时,S=
5
5

(2)当0≤t≤2时.求满足△BPQ的面积有最大值的P、Q两点坐标.
(3)在P,Q两点运动的过程中,是否存在某一时刻,使用S=6?若存在.请直接写出所有符合条件的P点坐标;若不存在.请说明理由.
分析:(1)△OPQ的面积=正方形的面积-△OAP的面积-△OCQ的面积-△BPQ的面积,依此列式计算即可求解;
(2)由题意得,当0≤t≤2时,PA=2t,PB=4-2t,BQ=t,CQ=4-t.根据三角形面积可得△BPQ的面积=-(t-1)2+1,
依此即可求解;
(3)分当0≤t≤2时,当2<t≤4时,当4<t<8时,三种情况讨论可求符合条件的P点坐标.
解答:解:(1)当t=1时,AP=2,BQ=1,则BP=2,CQ=3,
△OPQ的面积=4×4-
1
2
×4×2-
1
2
×4×3-
1
2
×2×1=16-4-6-1=5;

(2)由题意得,当0≤t≤2时,PA=2t,PB=4-2t,BQ=t,CQ=4-t.
△BPQ的面积=
1
2
PB•BQ=
1
2
t(4-2t)=-t2+2t=-(t-1)2+1,
故当t=1时,△BPQ的面积的最大值是1.
此时,P(2,4)、Q(4,3).

(3)当0≤t≤2时,PA=2t,PB=4-2t,BQ=t,CQ=4-t.
S=4×4-
1
2
×4×2t-
1
2
t(4-2t)-
1
2
×4(4-t)=6,
解得t1=2-
2
,t2=2+
2
(不合题意舍去),
P点坐标为(4-2
2
,4);
当2<t≤4时,OQ=4-t.
S=4×4-
1
2
×4×(8-2t)-
1
2
t(2t-4)-
1
2
×4(4-t)=6,
解得t1=4-
2
,t2=4+
2
(不合题意舍去),
P点坐标为(2
2
,4);
当4<t<8时,OQ=8-t.
S=
1
2
×4(8-t)=6,
解得t=5,
P点坐标为(2,4).
综上所述,P点坐标为(4-2
2
,4);(2
2
,4);(2,4).
故答案为:5.
点评:考查了相似形综合题,涉及的知识点有:正方形的面积,三角形面积,二次函数的最值,分类思想的运用,(3)问的难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案