精英家教网 > 初中数学 > 题目详情
精英家教网如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2-2x-8=0的两个根.
(1)求这条抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;
(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
分析:(1)先通过解方程求出A,B两点的坐标,然后根据A,B,C三点的坐标,用待定系数法求出抛物线的解析式.
(2)本题要通过求△CPE的面积与P点横坐标的函数关系式而后根据函数的性质来求△CPE的面积的最大值以及对应的P的坐标.△CPE的面积无法直接表示出,可用△CPB和△BEP的面积差来求,设出P点的坐标,即可表示出BP的长,可通过相似三角形△BEP和△BAC求出.△BEP中BP边上的高,然后根据三角形面积计算方法即可得出△CEP的面积,然后根据上面分析的步骤即可求出所求的值.
(3)本题要分三种情况进行讨论:
①QC=BC,那么Q点的纵坐标就是C点的纵坐标减去或加上BC的长.由此可得出Q点的坐标.
②QB=BC,此时Q,C关于x轴对称,据此可求出Q点的坐标.
③QB=QC,Q点在BC的垂直平分线上,可通过相似三角形来求出QC的长,进而求出Q点的坐标.
解答:精英家教网解:(1)∵x2-2x-8=0,∴(x-4)(x+2)=0.
∴x1=4,x2=-2.
∴A(4,0),B(-2,0).
又∵抛物线经过点A、B、C,设抛物线解析式为y=ax2+bx+c(a≠0),
c=4
16a+4b+c=0
4a-2b+c=0

a=-
1
2
b=1
c=4

∴所求抛物线的解析式为y=-
1
2
x2+x+4.

(2)设P点坐标为(m,0),过点E作EG⊥x轴于点G.
∵点B坐标为(-2,0),点A坐标(4,0),
∴AB=6,BP=m+2.
∵PE∥AC,
∴△BPE∽△BAC.
BP
AB
=
EG
CO

EG
4
=
m+2
6

∴EG=
2m+4
3

∴S△CPE=S△CBP-S△EBP
=
1
2
BP•CO-
1
2
BP•EG精英家教网
∴S△CPE=
1
2
(m+2)(4-
2m+4
3

=-
1
3
m2+
2
3
m+
8
3

∴S△CPE=-
1
3
(m-1)2+3.
又∵-2≤m≤4,
∴当m=1时,S△CPE有最大值3.
此时P点的坐标为(1,0).

(3)存在Q点,
∵BC=2
5

设Q(1,n),
当BQ=CQ时,
则32+n2=12+(n-4)2
解得:n=1,
即Q1(1,1);
当BC=BQ=2
5
时,9+n2=20,
解得:n=±
11

∴Q2(1,
11
),Q3(1,-
11
);
当BC=CQ=2
5
时,1+(n-4)2=20,
解得:n=4±
19

∴Q4(1,4+
19
),Q5(1,4-
19
).
综上可得:坐标为Q1(1,1),Q2(1,
11
),Q3(1,-
11
),Q4(1,4+
19
),Q5(1,4-
19
).
点评:本题着重考查了待定系数法求二次函数解析式、图形面积的求法、三角形相似、探究等腰三角形的构成情况等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•历下区一模)如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于C(0,3),M是抛物线对称轴上的任意一点,则△AMC的周长最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线与y轴交于点A(0,4),与x轴交于B、C两点.其中OB、OC是方程的x2-10x+16=0两根,且OB<OC.
(1)求抛物线的解析式;
(2)直线AC上是否存在点D,使△BCD为直角三角形.若存在,求所有D点坐标;反之说理;
(3)点P为x轴上方的抛物线上的一个动点(A点除外),连PA、PC,若设△PAC的面积为S,P点横坐标为t,则S在何范围内时,相应的点P有且只有1个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线与x轴交于A、B(6,0)两点,且对称轴为直线x=2,与y轴交于点C(0,-4).
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一个动点,连接MA、MC,当△MAC的周长最小时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形,如果存在,直接写出所有满足条件的点F的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案