【题目】二次函数()的图象如图所示,其对称轴为,有下列结论;则正确的个数有( )
①;②;③;④;⑤;⑥若,则;
A.3个B.4个C.5个D.6个
【答案】C
【解析】
由抛物线开口方向得到a>0,然后利用抛物线的对称轴得到b的符号,由抛物线与y轴的交点判断c的符号,即可对①作出判断;利用x=-1时,y<0可对②作出判断;利用抛物线的对称轴方程为x= 和对称轴为,即可对③作出判断; 利用x=2时,y﹥0可对④作出判断;利用判别式的意义和抛物线与x轴有2个交点可对⑤作出判断;利用x=1时,y的值最大,即可对⑥作出判断.
解:∵抛物线开口向下,
∴a<0,
又抛物线的对称轴为直线x==1,
∴>0,
∴b﹥0,
∵由抛物线与y轴的交点在x轴上方,
∴c﹥0
∴abc<0,
∴①错误;
∵x=-1时,y<0,
∴a-b+c<0,
∴,
∴②正确;
由题意可知:对称轴x=1,
∴=1,
∴2a+b=0,
故∴③正确;
有对称知,当x=2时,y﹥0,
∴y=
∴④正确;
∵抛物线与x轴有2个交点,
∴b24ac>0,
∴⑤正确;
当x=1时,y=a+b+c,此时a+b+c为最大值,
当x=m时,y=am2+bm+c,
∵,
∴am2+bm+c<a+b+c,
,
故⑥正确.
故选C
科目:初中数学 来源: 题型:
【题目】如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且ADAO=AMAP.
(1)连接OP,证明:△ADM∽△APO;
(2)证明:PD是ΘO的切线;
(3)若AD=24,AM=MC,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB= cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,(图1,图2),四边形ABCD是边长为4的正方形,点E在线段BC上,∠AEF=90°,且EF交正方形外角平分线CP于点F,交BC的延长线于点N, FN⊥BC.
(1)若点E是BC的中点(如图1),AE与EF相等吗?
(2)点E在BC间运动时(如图2),设BE=x,△ECF的面积为y。
①求y与x的函数关系式;
②当x取何值时,y有最大值,并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.
(1)计算古树BH的高;
(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形 ABCD是菱形,BC∥x 轴.AD 与 y轴交于点 E,反比例函数 y=(x>0)的图象经过顶点 C、D,已知点 C的横坐标为5,BE=2DE,则 k的值为( )
A.B.C.D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数 y=ax2+bx 的图象与 x 轴交于点 O(0,0)和 点 B,抛物线的对称轴是直线 x=3.点 A 是抛物线在第一象限上的一个动点, 过点 A 作 AC⊥x 轴,垂足为 C.S△AOB=3S△ABC,AC2=OCBC.
(1)求该二次函数的解析式;
(2)抛物线的对称轴与 x 轴交于点 M.连接 AM,点 N 是线段 OA 上的一点.当 ∠AMN=∠AOM 时,求点 N 的坐标;
(3)点 P 是抛物线上的一个动点.点 Q 是 y 轴上的一动点.当以 A,B,P,Q 四个点为顶点的四边形为平行四边形时,直接写出点 P 坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=﹣2x+b与反比例函数y=的图象有两个交点A(m,3)和B,且一次函数y=﹣2x+b与x轴、y轴分别交于点C、D.过点A作AE⊥x轴于点E;过点B作BF⊥y轴于点F,点F的坐标为(0,﹣2),连接EF,tan∠FEO=2.
(1)求一次函数与反比例函数的解析式;
(2)求四边形AEFD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 二次函数y=-x2+bx+c的图象如图所示,下列几个结论:①对称轴为直线x=2;②当y≥0时,x<0或x>4:③函数表达式为y=-x2+4x;④当x≤0时,y随x的增大而增大.其中正确的结论有( )
A.①②③④B.①②③C.①③④D.②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com