【题目】如图,已知等边△ABC,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.
(1)当点D在线段BC上,∠NDB为锐角时,如图①.
①判断∠1与∠2的大小关系,并说明理由;
②过点F作FM∥BC交射线AB于点M,求证:CF+BE=CD;
(2)①当点D在线段BC的延长线上,∠NDB为锐角时,如图②,请直接写出线段CF,BE,CD之间的数量关系;
②当点D在线段CB的延长线上,∠NDB为钝角或直角时,如图③,请直接写出线段CF,BE,CD之间的数量关系.
【答案】(1)①∠1=∠2,理由见解析,②证明见解析;(2)①BE=CD+CF,②CF=CD+BE.
【解析】
(1)①由等边三角形的性质和∠ADN=60°,易得∠1+∠ADC=120°,∠2+∠ADC=120°,所以∠1=∠2;
②由条件易得四边形BCFM为平行四边形,得到BM=CF,BC=MF,再证明△MEF≌△CDA,得到ME=CD,利用等量代换即可得证;
(2)①过F作FH∥BC,易得四边形BCFH为平行四边形,可得HF=BC,BH=CF,然后证明△EFH≌△DAC,得到CD=EH,利用等量代换即可得BE=CD+CF;
②过E作EG∥BC,易得四边形BCGE为平行四边形,可得EG=BC,BE=CG,然后证明△EFG≌△ADC,得到CD=FG,利用等量代换即可得CF=CD+BE.
(1)①∠1=∠2,理由如下:
∵△ABC为等边三角形
∴∠ACB=60°
∴∠2+∠ADC=120°
又∵∠AND=60°
∴∠1+∠ADC=120°
∴∠1=∠2
②∵MF∥BC,CF∥BM
∴四边形BCFM为平行四边形
∴BM=CF,BC=MF=AC,
∵BC∥MF
∴∠1=∠EFM=∠2,∠EMF=∠ABC=60°
在△MEF和△CDA中,
∵∠EFM=∠2,MF= AC,∠EMF=∠ACD=60°
∴△MEF≌△CDA(ASA)
∴ME=CD
∴ME=BM+BE=CF+BE=CD
即CF+BE=CD
(2)①BE=CD+CF,证明如下:
如图,过F作FH∥BC,
∵CF∥BH,FH∥BC,
∴四边形BCFH为平行四边形
∴HF=BC=AC,BH=CF
∵△ABC为等边三角形
∴∠ABC=∠ACB=60°
∴∠CAD+∠ADC=60°,∠DBE=120°,∠ACD=120°
又∵∠AND=60°,即∠BDN+∠ADC=60°
∴∠CAD=∠BDN
∵BD∥HF
∴∠HFE=∠BDN=∠CAD,∠EHF=∠ACD=120°
在△EFH和△DAC中,
∵∠EHF=∠ACD,HF=AC,∠HFE=∠CAD
∴△EFH≌△DAC(ASA)
∴EH=CD
∴BE=BH+EH=CF+CD
即BE=CD+CF;
②CF=CD+BE,证明如下:
如图所示,过E作EG∥BC,
∵EG∥BC,CG∥BE
∴四边形BCGE为平行四边形,
∴EG=BC=AC,BE=CG,
∵∠AND=60°,∠ACD=60°
∴∠ADC+∠CDE=120°,∠ADC+∠DAC=120°
∴∠CDE=∠DAC
又∵CD∥EG
∴∠GEF=∠CDE=∠DAC,∠EGF=∠DCF
∵AE∥CF
∴∠DCF=∠ABC=60°
∴∠EGF=∠ABC=60°
在△EFG和△ADC中,
∵∠GEF=∠DAC,EG=AC,∠EGF=∠ACD=60°
∴△EFG≌△ADC(ASA)
∴FG=CD
∴CF=CG+FG=BE+CD
即CF=CD+BE
科目:初中数学 来源: 题型:
【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是正内一点,,,,将线段以点为旋转中心逆时针旋转60°得到线段,连接,下列结论:①可以由绕点逆时针旋转60°得到:②点与的距离为4;③;④四边形;⑤.其中正确的结论是( )
A.①②③④B.①②③⑤C.①②④⑤D.①②③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∥x轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图②,那么平行四边形ABCD的面积为()
A.4B.C.D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:是等腰直角三角形,动点在斜边所在的直线上,以为直角边作等腰直角三角形,其中,探究并解决下列问题:
(1)如图①,若点在线段上,且,,则:
①长为 ;的长为 ;
②猜想:,,三者之间的数量关系为 ;
(2)如图②,若点在的延长线上,在(1)中所猜想的结论依然成立,请你利用图②给出证明过程;
(3)若动点满足,求的值.(提示:请利用备用图进行探求)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列两段材料,回答问题:
材料一:点,的中点坐标为.例如,点,的中点坐标为,即
材料二:如图1,正比例函数和的图象相互垂直,分别在和上取点、使得分别过点作轴的垂线,垂足分别为点.显然,,设,,则,..于是,所以的值为一个常数,一般地,一次函数,可分别由正比例函数平移得到.
所以,我们经过探索得到的结论是:任意两个一次函数,的图象相互垂直,则的值为一个常数.
(1)在材料二中,=______(写出这个常数具体的值)
(2)如图2,在矩形中,点是中点,用两段材料的结论,求点的坐标和的垂直平分线的解析式;
(3)若点与点关于对称,用两段材料的结论,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E、F分别在平行四边形ABCD边BC和AD上(E、F都不与两端点重合),连结AE、DE、BF、CF,其中AE和BF交于点G,DE和CF交于点H.令,.若,则图中有_______个平行四边形(不添加别的辅助线);若,且四边形ABCD的面积为28,则四边形FGEH的面积为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com