【题目】问题的提出:
如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和PA+PB+PC的值为最小?
问题的转化:
(1)把ΔAPC绕点A逆时针旋转60度得到连接这样就把确定PA+PB+PC的最小值的问题转化成确定的最小值的问题了,请你利用如图证明:
;
问题的解决:
(2)当点P到锐角△ABC的三项点的距离之和PA+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置:_____________________________;
问题的延伸:
(3)如图是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.
【答案】(1)证明见解析;(2)∠APB=∠APC=120°;(3).
【解析】
(1)问题的转化:
根据旋转的性质证明△APP'是等边三角形,则PP'=PA,可得结论;
(2)问题的解决:
运用类比的思想,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,PA+PB+PC的值为最小,确定当:∠APB=∠APC=120°时,满足三点共线;
(3)问题的延伸:
如图3,作辅助线,构建直角△ABC',利用勾股定理求AC'的长,即是点P到这个三角形各顶点的距离之和的最小值.
问题的转化:
如图1,
由旋转得:∠PAP'=60°,PA=P'A,
∴△APP'是等边三角形,
∴PP'=PA,
∵PC=P'C,
∴PA+PB+PC=BP+PP′+P′C′.
问题的解决:
满足:∠APB=∠APC=120°时,PA+PB+PC的值为最小;
理由是:如图2,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,
由“问题的转化”可知:当B、P、P'、C'在同一直线上时,PA+PB+PC的值为最小,
∵∠APB=120°,∠APP'=60°,
∴∠APB+∠APP'=180°,
∴B、P、P'在同一直线上,
由旋转得:∠AP'C'=∠APC=120°,
∵∠AP'P=60°,
∴∠AP'C'+∠AP'P=180°,
∴P、P'、C'在同一直线上,
∴B、P、P'、C'在同一直线上,
∴此时PA+PB+PC的值为最小,
故答案为∠APB=∠APC=120°;
问题的延伸:
如图3,
Rt△ACB中,∵AB=2,∠ABC=30°,
∴AC=1,BC=,
把△BPC绕点B逆时针旋转60度得到△BP′C′,连接PP′,
当A、P、P'、C'在同一直线上时,PA+PB+PC的值为最小,
由旋转得:BP=BP',∠PBP'=60°,PC=P'C',BC=BC',
∴△BPP′是等边三角形,
∴PP'=PB,
∵∠ABC=∠APB+∠CBP=∠APB+∠C'BP'=30°,
∴∠ABC'=90°,
由勾股定理得:AC'=,
∴PA+PB+PC=PA+PP'+P'C'=AC'=,
则点P到这个三角形各顶点的距离之和的最小值为.
科目:初中数学 来源: 题型:
【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,三角形(记作)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是,,,先将向上平移3个单位长度,再向右平移2个单位长度,得到.
(1)在图中画出;
(2)点,的坐标分别为______、______;
(3)若轴有一点,使与面积相等,求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,-4),B(3,-3),C(1,-1).
(1)将△ABC先向上平移5个单位,再向左平移3个单位,画出平移后得到的△A1B1C1;
(2)写出△A1B1C1各顶点的坐标;
(3)若△ABC内有一点P(a,b),请写出平移后得到的对应点P1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所
示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:
(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;
(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线l交x轴和y轴于点A,B,反比例函数y=(x>0)的图象于点C,过点C作y轴的平行线交x轴于点D,过点B作x轴的平行线交反比例函数y=-(x<0)的图象于点E,则图中阴影部分的总面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且tan∠ACB=
求:(1)反比例函数的解析式;
(2)点C的坐标;
(3)∠ABC的余弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为线段AB上的一个点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上。若∠DAP=60°,AP2+3PB2=1, M,N分别是对角线AC,BE的中点. MN长为( )
A. B. C. 1D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com