精英家教网 > 初中数学 > 题目详情
3.为满足市场需求,某超市在“端午”节前购进一种品牌粽子,每盒进价40元,超市规定每盒售价不得低于40元.根据以往销售经验,当售价定为每盒45元时,预计每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求每天的销售量(盒)与售价(元)之间的函数关系式;
(2)当每盒定价为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)如果要保证超市每天的利润不少于6000元,又要尽量减少库存,超市每天最多可以销售出多少盒粽子?

分析 (1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;
(3)先由(2)中所求得的P与x的函数关系式,根据每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.

解答 解:(1)由题意得,y=700-20(x-45)=-20x+1600;

(2)P=(x-40)(-20x+1600)=-20x2+2400x-64000=-20(x-60)2+8000,
∵x≥45,a=-20<0,
∴当x=60时,P最大值=8000元,
即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;

(3)由题意,得-20(x-60)2+8000=6000,
解得x1=50,x2=70,
∵定价高于45元时,价格增加,销量减少,尽量减少库存,
∴定价为50元,
∴700-20(50-45)=600(盒),
答:要保证超市每天的利润不少于6000元,又要尽量减少库存,超市每天最多可以销售出600盒粽子.

点评 本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒粽子所获得的利润×销售量,求函数的最值时,注意自变量的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.若a-b=3,a+b=-2,则a2-b2=-6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.二次函数y=ax2(a>0)的图象经过点(1,y1)、(2,y2),则y1<y2(填“>”或“<”).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.为了增强环境保护意识,在“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,随机抽查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),并将抽查得到的数据进行整理(设所测数据是正整数),得频数分布表如表:
组  别噪声声级分组频  数频  率
144.5-59.540.1
259.5-74.5a0.2
374.5-89.5100.25
489.5-104.5bc
5104.5-119.560.15
合 计401.00
根据表中提供的信息解答下列问题:
(1)频数分布表中的a=8,b=12,c=0.3;
(2)补充完整频数分布直方图;
(3)如果全市共有400个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,数轴上的A、B、C、D四点中,与表示数-$\sqrt{5}$的点最接近的是(  )
A.点AB.点BC.点CD.点D

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某校为了解九年级学生的身体素质情况,从全校500名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制成如下频数表和频数直方图:
“跳绳”成绩的频数表
 组别 组中值(个) 频数频率 
 A 165 5 0.1
 B 175 10 a
 C 185 b 0.14
 D 195 16 c
 E 205 12 0.24
根据图表解决下列问题:
(1)本次抽样调查的样本容量是50,频数表中,a=0.2,b=7c=0.32;
(2)数据分组的组距是10,本次调查的个体是被抽到的每名九年级学生的跳绳成绩;
(3)补全频数直方图;
(4)“跳绳”数在180以上,则此项成绩可得满分,请估计全校九年级有多少学生在此项成绩中获满分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某学校为了解学生体能情况,规定参加测试的每名学生从“A:立定跳远”、“B:耐久跑”、C:“掷实心球”,D:“引体向上”四个项目中随机抽取两项作为测试项目.
(1)据统计,初二(3)班共12名男生参加了“立定跳远”的测试,他们的成绩如下:
95  100   90  82  90  65  89  74  75  93  92  85
①这组数据的众数是90,中位数是89.5;
②若将不低于90分的成绩评为优秀,请你估计初二年级180名男生中“立定跳远”成绩为优秀的学生约为多少人.
(2)请你不全表格,并求出小明同学恰好抽到“立定跳远”、“耐久跑”两项的概率.
  A B C D
 A    
 B    
 C    
 D    

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知⊙O是△ABC的外接圆,过点A作⊙O的切线,与CO的延长线于点P,CP与⊙O交于点D.
(1)如图①,若AP=AC,求∠B的大小;
(2)如图②,若AP∥BC,∠P=42°,求∠BAC的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,-$\frac{8}{3}$),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.
(1)求a的值及点A,B的坐标;
(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;
(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案