【题目】如图,点A和点B分别在x轴和y轴上,且OA=OB=4,直线BC交x轴于点C,S△BOC=S△ABC.
(1)求直线BC的解析式;
(2)在直线BC上求作一点P,使四边形OBAP为平行四边形(尺规作图,保留痕迹,不写作法).
科目:初中数学 来源: 题型:
【题目】小王玩游戏,一张纸片,第一次将其撕成四小片,以后每次都将其中一片撕成更小的四片,如此进行下去,当小王撕到第n次时,手中共有s张纸片.
(1)当小王撕了3次时,他手中有几张纸?
(2)用含有n的代数式表示s,并求小王要得到82张纸片需撕多少次?
(3)小王说:“我撕了若干次后,手中的纸片有2019张”,小王说的对不对?若不对,请说出你的理由;若对的,请指出小王需撕多少次?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在数轴上标出表示,的点,并比较大小: (填,);
(2)如图,,是有理数,比较大小: (填,);
(3)请借助数轴说明为什么“两个负数中,绝对值大的反而小”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将沿直线平移到的位置,连接、.
(1)如图1,写出线段与的关系__________;
(2)如图1,求证:;
(3)如图2,当是边长为2的等边三角形时,以点为原点,所在的直线为轴建立平面直角坐标系.求出点的坐标,使得以、、、为顶点的四边形是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校要开展校园艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下两幅不完整的统计图.
请根据图中信息,回答下列问题:
(1)本次共调查了_________名学生.
(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于_________度.
(3)补全条形统计图(并标注频数).
(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法,其中正确的有( )
①如果a大于b,那么a的倒数小于b的倒数;②若a与b互为相反数,则=﹣;③几个有理数相乘,负因数的个数是偶数时,积是正数;④如果mx=my,那么x=y,
A.0B.1C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设计调查问卷时,下列提问是否合适?如果不合适的话应该怎样改进?
(1)你上学时使用的交通工具是
.汽车.摩托车.步行.其他
(2)你对老师的教学满意吗?
.比较满意.满意.非常满意.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com