精英家教网 > 初中数学 > 题目详情
22、如图,在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.
①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.
分析:由BE=CF?BC=EF,所以,由1,2,4,可用SSS?△ABC≌△DEF?∠ABC=∠DEF;由1,3,4,可用SAS?△ABC≌△DEF?AC=DF;由于不存在ASS的证明全等三角形的方法,故由其它三个条件不能得到1或4.
解答:将①②④作为题设,③作为结论,可写出一个正确的命题,如下:
已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.
求证:∠ABC=∠DEF.
证明:在△ABC和△DEF中
∵BE=CF
∴BC=EF
又∵AB=DE,AC=DF
∴△ABC≌△DEF(SSS)
∴∠ABC=∠DEF.

将①③④作为题设,②作为结论,可写出一个正确的命题,如下:
已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,∠ABC=∠DEF,BE=CF.
求证:AC=DF.
证明:在△ABC和△DEF中
∵BE=CF
∴BC=EF
又∵AB=DE,∠ABC=∠DEF
∴△ABC≌△DEF(SAS)
∴AC=DF.
点评:这是一道开放题.四个条件可组合成四个命题,其中有真有假,考生既要会证明真命题,还要会对假命题举反例加以否定,本题既考查了学生的基础知识,又考查了学生的创新能力.给学生提供了充分展示才能的空间,不同层次不同能力的学生可以给出不同的结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知,如图,在△ABC和△EDB中,∠ACB=∠EBD=90°,点E在BC上,DE⊥AB交AB于F,且AB=ED.求证:DB=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,AC∥DE,∠EFD与∠B互补,DE=mAC(m>1).试探索线段EF与AB的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”证明△ABC≌△ABD,则需要加条件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB边上的中点.则DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,请说明AE=BD的理由.

查看答案和解析>>

同步练习册答案