精英家教网 > 初中数学 > 题目详情
(2013•惠安县质检)如图,已知Rt△ABC中,∠A=30°,AC=6.边长为4的等边△DEF沿射线AC运动(A、D、E、C四点共线).

(1)当等边△DEF的边DF、EF与Rt△ABC的边AB分别相交于点M、N(M、N不与A、B重合)时.
①试判定△FMN的形状,并说明理由;
②若以点M为圆心,MN为半径的圆与边AC、EF同时相切,求此时MN的长.
(2)设AD=x,△ABC与△DEF重叠部分的面积为y,求y关于x的函数解析式,并写出x的取值范围.
分析:(1)①根据已知得出∠AMD=∠FDE-∠A=30°,进而得出∠MNF=90°,
②设DM=x,根据∠MDG=60°,得出MG=
3
2
x
,进而得出MN=
3
2
MF
,利用MG=MN,求出即可;
(2)分别根据当0<x≤2时,S四边形DENM=S△FDE-S△FMN,②当2<x<4时,y五边形DCPNM=S△DEF-S△FMN-S△PCE
③如图3,当4≤x<6时,CD=6-x,y=S△PCD,④当x≥6时,y=0,得出即可.
解答:解:(1)如图1,①∵△DEF是等边三角形,
∴∠FDE=∠F=60°.
∵∠A=30°,
∴∠AMD=∠FDE-∠A=30°,
∴∠FMN=∠AMD=30°,
∴∠MNF=90°,
即△FMN是直角三角形,
②如图2,过点M作MG⊥AC于点G,
设DM=x,
∵∠MDG=60°,
∴MG=
3
2
x

又∵△FMN是直角三角形,∠MFN=60°,
∴MN=
3
2
MF
=
3
2
(4-x)

∵以点M为圆心,MN为半径的圆与边AC、EF同时相切,
则有MG=MN,
3
2
x=
3
2
(4-x)

解得:x=2.
∴圆的半径MN=
3
2
(4-2)=
3


(2)∵∠AMD=∠A=30°,
∴DM=AD,
∴DM=AD=x,FM=4-x.
又∵△FMN是直角三角形,∠MFN=60°
∴MN=MF•sinF=(4-x)×
3
2
=
3
2
(4-x),
FN=
1
2
MF=
1
2
(4-x),
S△FMN=
1
2
MN•FN=
1
2
×
3
2
(4-x)×
1
2
(4-x)=
3
8
(4-x)2
①当0<x≤2时,S四边形DENM=S△FDE-S△FMN=4
3
-
3
8
(4-x)2=-
3
8
x2+
3
x+2
3

②当2<x<4时,
CE=AE-AC=4+x-6=x-2.
∵∠BCE=90°,∠PEA=60°,
∴PC=
3
(x-2)

∴S△PCE=
1
2
×
3
(x-2)(x-2)=
3
2
(x-2)2
∴y五边形DCPNM=S△DEF-S△FMN-S△PCE=-
5
8
3
x2+3
3
x

③如图3,当4≤x<6时,CD=6-x,
∵∠BCE=90°,∠PDC=60°,
∴PC=
3
(6-x)

∴y=S△PCD=
1
2
×
3
(6-x)(6-x)=
3
2
(6-x)2
④当x≥6时 y=0.
点评:本题考查了圆的综合题,涉及到直角三角形的性质、锐角三角函数的定义、三角形的面积等知识,难度适中,注意自变量x的取值范围的分析与讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•惠安县质检)方程2x+8=0的解是
x=-4
x=-4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•惠安县质检)如图,在梯形ABCD中,E、F分别为AB、CD边上的中点,AD=3,BC=5.则EF的长为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•惠安县质检)如图所示,有一个直径是2米的圆形铁皮,从中剪出一个扇形ABC,其中BC是⊙O的直径.那么被剪掉的阴影部分面积=
π
2
π
2
平方米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•惠安县质检)把两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:

(1)如图1,将△DEF沿线段AB向右平移(即D点在线段AB内移动),当D点移至AB的中点时,连接DC、CF、FB,四边形CDBF的形状是
菱形
菱形

(2)如图2,将△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,则sinα的值等于
21
14
21
14

查看答案和解析>>

同步练习册答案