分析 (1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出k值,从而得出反比例函数表达式,再由点B的坐标和反比例函数表达式即可求出m值,结合点A、B的坐标利用待定系数法即可求出一次函数表达式;
(2)令一次函数表达式中x=0求出y值即可得出点C的坐标,利用分解图形求面积法结合点A、B的坐标即可得出结论.
解答 解:(1)∵点A(-4,-2)在反比例函数y=$\frac{k}{x}$的图象上,
∴k=-4×(-2)=8,
∴反比例函数的表达式为y=$\frac{8}{x}$;
∵点B(m,4)在反比例函数y=$\frac{8}{x}$的图象上,
∴4m=8,解得:m=2,
∴点B(2,4).
将点A(-4,-2)、B(2,4)代入y=ax+b中,
得:$\left\{\begin{array}{l}{-4a+b=-2}\\{2a+b=4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=2}\end{array}\right.$,
∴一次函数的表达式为y=x+2.
(2)令y=x+2中x=0,则y=2,
∴点C的坐标为(0,2).
∴S△AOB=$\frac{1}{2}$OC×(xB-xA)=$\frac{1}{2}$×2×[2-(-4)]=6.
点评 本题考查了反比例函数与一次函数的交点坐标、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是:(1)利用待定系数法求函数表达式;(2)利用分割图形求面积法求出△AOB的面积.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{25}$=±$\sqrt{5}$ | B. | (-$\sqrt{0.36}$)2=-0.36 | C. | $\root{3}{64}$=4 | D. | $\sqrt{(-3)^{2}}$=3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 四条边相等的四边形是菱形 | B. | 对角线垂直的四边形是菱形 | ||
C. | 对角线相等的四边形是矩形 | D. | 四个角相等的四边形是正方形 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0.34×10-9米 | B. | 34.0×10-11米 | C. | 3.4×10-10米 | D. | 3.4×10-9米 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
尺码 | 170 | 175 | 180 | 185 | 190 |
平均每天的销售量/件 | 7 | 9 | 18 | 10 | 6 |
A. | 20件 | B. | 18件 | C. | 36件 | D. | 50件 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com