ÔĶÁ²ÄÁÏ£º¡ßax2+bx+c=0£¨a¡Ù0£©ÓÐÁ½¸ùΪ£®£®¡à£¬£®×ÛÉϵã¬Éèax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸ùΪx1¡¢x2£¬ÔòÓУ¬£®ÀûÓôË֪ʶ½â¾ö£º
£¨1£©ÒÑÖªx1£¬x2ÊÇ·½³Ìx2-x-1=0µÄÁ½¸ù£¬²»½â·½³ÌÇóÏÂÁÐʽ×ÓµÄÖµ£º¢Ùx12+x22£»¢Ú£¨x1+1£©£¨x2+1£©£»
£¨2£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹¹ØÓÚxµÄ·½³Ìx2+£¨m+1£©x+m+4=0µÄÁ½¸ùƽ·½ºÍµÈÓÚ2£¿Èô´æÔÚ£¬Çó³öÂú×ãÌõ¼þµÄmµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©Ïȸù¾Ý¸ùÓëϵÊýµÄ¹ØϵµÃ³öx1+x2£¬x1x2µÄÖµ£¬ÔÙ¶Ô¢ÙÀûÓÃÍêȫƽ·½¹«Ê½±äÐΣ¬×îºó°Ñx1+x2£¬x1x2µÄÖµ´úÈë¼ÆËã¼´¿É£¬¶Ô¢ÚÀûÓöàÏîʽ³ËÒÔ¶àÏîʽչ¿ª£¬ÔÙ½áºÏ£¬È»ºó°Ñ°Ñx1+x2£¬x1x2µÄÖµ´úÈë¼ÆËã¼´¿É£»
£¨2£©Ïȸù¾Ý¸ùÓëϵÊýµÄ¹ØϵµÃ³öa+b£¬abµÄÖµ£¬ÔÙÀûÓÃÍêȫƽ·½¹«Ê½¶Ôa2+b2±äÐΣ¬ÔÙ´úÈëa+b£¬abµÄÖµ£¬½ø¶ø¿ÉÇóm£®
½â´ð£º½â£º£¨1£©¡ßx1£¬x2ÊÇ·½³Ìx2-x-1=0µÄÁ½¸ù£¬
¡àx1+x2=1£¬x1x2=-1£¬
¡à¢Ùx12+x22=£¨x1+x2£©2-2x1x2=1-2×£¨-1£©=3£»
¢Ú£¨x1+1£©£¨x2+1£©=x1x2+£¨x1+x2£©+1=-1+1+1=1£®
£¨2£©Éè·½³ÌµÄÁ½¸ùÊÇa¡¢b£¬Ôò
a+b=-£¨m+1£©£¬ab=m+4£¬
a2+b2=£¨a+b£©2-2ab=£¨m+1£©2-2£¨m+4£©=2£¬
½âµÃm=±3£®
µãÆÀ£º±¾Ì⿼²éÁ˸ùÓëϵÊýµÄ¹Øϵ£¬½âÌâµÄ¹Ø¼üÊÇ×¢ÒâÕûÌå´úÈëÒÔ¼°Íêȫƽ·½¹«Ê½µÄÀûÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁ²ÄÁÏ£º¡ßax2+bx=c=0£¨a¡Ù0£©ÓÐÁ½¸ùΪx1=
-b+
b2-4ac
2a
£®x2=
-b-
b2-4ac
2a
£®
¡àx1+x2=
-2b
2a
=-
b
a
£¬x1x2=
b2-(b2-4ac)
4a2
=
c
a
£®
×ÛÉϵã¬Éèax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸ùΪx1¡¢x2£¬ÔòÓÐx1+x2=-
b
a
£¬x1x2=
c
a

ÀûÓôË֪ʶ½â¾ö£ºÊÇ·ñ´æÔÚʵÊým£¬Ê¹¹ØÓÚxµÄ·½³Ìx2+£¨m+1£©x+m+4=0µÄÁ½¸ùƽ·½ºÍµÈÓÚ2£¿Èô´æÔÚ£¬Çó³öÂú×ãÌõ¼þµÄmµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁ²ÄÁÏ£º¡ßax2+bx+c=0£¨a¡Ù0£©ÓÐÁ½¸ùΪx1=
-b+
b2-4ac
2a
£®x2=
-b-
b2-4ac
2a
£®¡àx1+x2=
-2b
2a
=-
b
a
£¬x1x2=
b2-(b2-4ac)
4a2
=
c
a
£®×ÛÉϵã¬Éèax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸ùΪx1¡¢x2£¬ÔòÓÐx1+x2=-
b
a
£¬x1x2=
c
a
£®ÀûÓôË֪ʶ½â¾ö£ºÒÑÖªx1£¬x2ÊÇ·½³Ìx2-x-1=0µÄÁ½¸ù£¬²»½â·½³ÌÇóÏÂÁÐʽ×ÓµÄÖµ£º
¢Ùx12+x22£»                 
¢Ú£¨x1+1£©£¨x2+1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁ²ÄÁÏ£º¡ßax2+bx+c=0£¨a¡Ù0£©ÓÐÁ½¸ùΪx1=
-b+
b2-4ac
2a
£®x2=
-b-
b2-4ac
2a
£®¡àx1+x2=
-2b
2a
=-
b
a
£¬x1x2=
b2-(b2-4ac)
4a2
=
c
a
£®×ÛÉϵã¬Éèax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸ùΪx1¡¢x2£¬ÔòÓÐx1+x2=-
b
a
£¬x1x2=
c
a
£®ÀûÓôË֪ʶ½â¾ö£º
£¨1£©ÒÑÖªx1£¬x2ÊÇ·½³Ìx2-x-1=0µÄÁ½¸ù£¬²»½â·½³ÌÇóÏÂÁÐʽ×ÓµÄÖµ£º¢Ùx12+x22£»¢Ú£¨x1+1£©£¨x2+1£©£»
£¨2£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹¹ØÓÚxµÄ·½³Ìx2+£¨m+1£©x+m+4=0µÄÁ½¸ùƽ·½ºÍµÈÓÚ2£¿Èô´æÔÚ£¬Çó³öÂú×ãÌõ¼þµÄmµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÔĶÁ²ÄÁÏ£º¡ßax2+bx+c=0£¨a¡Ù0£©ÓÐÁ½¸ùΪÊýѧ¹«Ê½£®Êýѧ¹«Ê½£®¡àÊýѧ¹«Ê½£¬Êýѧ¹«Ê½£®×ÛÉϵã¬Éèax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸ùΪx1¡¢x2£¬ÔòÓÐÊýѧ¹«Ê½£¬Êýѧ¹«Ê½£®ÀûÓôË֪ʶ½â¾ö£ºÒÑÖªx1£¬x2ÊÇ·½³Ìx2-x-1=0µÄÁ½¸ù£¬²»½â·½³ÌÇóÏÂÁÐʽ×ÓµÄÖµ£º
¢Ùx12+x22£»¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
¢Ú£¨x1+1£©£¨x2+1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸