精英家教网 > 初中数学 > 题目详情
4.先化简,再求值:$\frac{{x}^{2}-2x}{x}÷(x-\frac{4}{x})$,其中x=$\sqrt{3}$.

分析 先将原式化简,然后将x的值代入即可求出答案.

解答 解:原式=$\frac{x(x-2)}{x}$÷(x-$\frac{4}{x}$)
=(x-2)×$\frac{x}{(x-2)(x+2)}$
=$\frac{x}{x+2}$
当x=$\sqrt{3}$时,
∴原式=$\frac{\sqrt{3}}{2+\sqrt{3}}$=2$\sqrt{3}$-3

点评 本题考查分式的化简求值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.如图,每一幅图中均含有若干个菱形,第①幅图中含有1个菱形;第②幅图中含有5个菱形;…按这样的规律下去,则第⑦幅图中含有的菱形的个数为(  )
A.50B.80C.91D.140

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,某同学家在A处,现在该同学要去位于B处的同学家去玩,请帮助他选择一条最近的路线(  )
A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在平面直角坐标系xOy中,A(1,1),B(2,2),双曲线y=$\frac{k}{x}$与线段AB有公共点,则k的取值范围是(  )
A.k>0B.k≥1C.k≥4D.1≤k≤4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.抛物线y=ax2+bx+3交x轴于点A(-3,0)和点B(1,0),交y轴于点C.
(1)求抛物线的函数表达式及抛物线的对称轴;
(2)如图a,点P是抛物线上第二象限内的一动点,若以AP,AO为邻边的平行四边形第四个顶点恰好落在抛物线上,求出此时点P的坐标;
(3)如图b,点D是抛物线上第二象限内的一动点,过点O,D的直线y=kx交AC于点E,若S△CDE:S△CEO=2:3,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=$\frac{p}{q}$.
例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=$\frac{3}{4}$.
(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.
求证:对任意一个完全平方数m,总有F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;
(3)在(2)所得“吉祥数”中,求F(t)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.

(1)将?ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段AE,GF;S矩形AEFG:S?ABCD=1:2.
(2)?ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;
(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简,再求值:$\frac{{a}^{2}-4a+4}{{a}^{2}-4}$÷$\frac{a-2}{{a}^{2}+2a}$-3,其中a=$\frac{7}{2}$.

查看答案和解析>>

同步练习册答案