精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰三角形ABC,AB=AC,点DAC上一点,且AD=BD=BC,则等腰三角形ABC的顶角度数为__________________

【答案】360

【解析】

AB=AC,AD=BD=BC,根据等角对等边的知识,可得∠A=ABD,C=ABC=CDB,设∠A=x°,根据等腰三角形的性质得出∠ABD=x°,C=ABC=CDB=2x°,然后根据三角形的内角和定理得出关于x的方程,解方程即可求得答案.

AB=AC,AD=BD=BC,

∴∠A=ABD,C=ABC=CDB,

设∠A=x°,则∠ABD=A=x°,

∴∠C=ABC=CDB=A+ABD=2x°,

∵∠A+C+ABC=180°,

x+2x+2x=180,

解得x=36.

故等腰三角形ABC的顶角度数为36°.

故答案为:36°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+
∠AOB=60°

(1)求∠AOB的度数;
(2)若AE=1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据如表回答下列问题:

x

16.2

16.3

16.4

16.5

16.6

16.7

16.8

16.9

17.0

x2

262.44

265.69

268.96

272.25

275.56

278.89

282.24

285.61

289

(1)275.56的平方根是______ ;

(2)= ______ ;

(3)查看上表, <<

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ACB中,∠ACB=90°,AC=BC,C点坐标为(﹣3,0),A点坐标为(﹣8,4),则B点的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.

(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:

如图1,若∠BCA=90°,∠α=90°,则BE_____CF;EF_____|BE﹣AF|(填“>”,“<”“=”);

如图2,若0°<∠BCA<180°,请添加一个关于∠α∠BCA关系的条件_____,使中的两个结论仍然成立。

(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并给出理由。.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),AE、F、C在一条直线上,AE=CF,过E、F分别作DEAC,BFAC,若AB=CD,试证明BD平分EF,若将DEC的边EC沿AC方向移动变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为(

A.2.3
B.2.4
C.2.5
D.2.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(2 ,2)、B(2 ,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2 ,2 )的位置,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠B=60°,ABC的角平分线AD、CE相交于点O,

(1)求∠AOC的度数;

(2)求证:OE=OD;

(3).猜测AE,CD,AC三者的数量关系,并证明.

查看答案和解析>>

同步练习册答案