精英家教网 > 初中数学 > 题目详情
如图(1)所示,正比例函数y=kx与反比例函数y=
t
x
的图象交于点A(-3,2).


(1)试确定上述正比例函数与反比例函数的解析式;
(2)根据图象回答,在第二象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)如图(2)所示,P(m,n)是反比例函数图象上的一动点,其中-3<m<0,过点P作直线PBx轴,交y轴于点B,过点A作直线ADy轴,交x轴于点D,交直线PB于点C.当四边形OACP的面积为6时,请判断线段BP与CP的大小关系,并说明理由.
(4)在第(3)问条件中,连接AP,若∠PAO=90°,试求分式m2+
16
m2
的值.
(1)把A(-3,2)代入y=kx得:2=-3k,
解得:k=-
2
3

∴y=-
2
3
x,
代入y=
t
x
得:t=-6,
∴y=-
6
x

答:正比例函数与反比例函数的解析式分别是y=-
2
3
x,y=-
6
x


(2)∵A(-3,2),
由图象可知:当-3<x<0时,在第二象限内,反比例函数的值大于正比例函数的值.

(3)答:线段BP与CP的大小关系是BP=CP,
理由是:∵P(m,n)在y=-
6
x
上,
∴mn=-6,
∵DO=3,AD=2,OB=n,BP=-m,CP=3-PB,DC=n,
四边形OACP的面积为6,
∴S矩形CDOB-S△ADO-S△OBP=6,
3n-
1
2
×3×2-
1
2
×(-mn)=6,
3n-3-
1
2
×6=6,
3n=12,
解得:n=4,
∴m=-
6
4
=-
3
2

∴P(-
3
2
,4),
∴PB=
3
2
,CP=3-
3
2
=
3
2

∴BP=CP.

(4)∵P(m,n),P点在y=-
6
x
图象上,
∴mn=-6,
∴n=-
6
m

∵∠PAO=90°,
∴∠CAP+∠DAO=90°,
∵∠AOD+∠DAO=90°,
∴∠AOD=∠CAP,
又∵∠C=∠ADO=90°,
∴△CAP△DOA,
AD
CP
=
DO
AC

2
3+m
=
3
-
6
m
-2

解得:m1=-3(不合题意舍去),m2=-
4
3

∴m2+
16
m2
=(-
4
3
2+
16
(-
4
3
)2
=
97
9
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是某反比例函数的图象,则此反比例函数的解析式是(  )
A.y=
2
x
(x<0)
B.y=-
2
x
(x<0)
C.y=
1
2x
(x<0)
D.y=-
1
2x
(x<0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示的曲线是一个反比例函数的图象的一支,且经过点P(2,3).
(1)求该曲线所表示的函数解析式;
(2)当0<x<2时,根据图象请直接写出y的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某学校锅炉房建有一个储煤库,开学初购进一批煤,按每天用煤0.6吨计算,一学期(按150天计)刚好用完,若每天的耗煤量为x(吨),那么这批煤能维持y(天).
(1)求y与x之间的函数关系式;
(2)在给定的坐标系中,作出(1)中求出的函数图象;
(3)若每天节约0.1吨煤,这批煤能维持多少天?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x轴所在的直线绕着原点O逆时针旋转α度角后的图形.若它与反比例函数y=
3
x
的图象分别交于第一、三象限的点B,D,已知点A(-m,O)、C(m,0).
(1)直接判断并填写:不论α取何值,四边形ABCD的形状一定是______;
(2)①当点B为(p,1)时,四边形ABCD是矩形,试求p,α,和m的值;
②观察猜想:对①中的m值,能使四边形ABCD为矩形的点B共有几个?(不必说理)
(3)试探究:四边形ABCD能不能是菱形?若能,直接写出B点的坐标,若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知双曲线y=
k
x
(k>0)
与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:
(1)若点A的坐标为(4,2),则点B的坐标为______;若点A的横坐标为m,则点B的坐标可表示为______;
(2)如图2,过原点O作另一条直线l,交双曲线y=
k
x
(k>0)
于P,Q两点,点P在第一象限.
①说明四边形APBQ一定是平行四边形;
②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.
(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?
(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=
优惠金额
购买商品的总金额
),写出p与x之间的函数关系式,并说明p随x的变化情况;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数y=
k
x
过点P,P点的坐标为(3-m,2m),m是分式方程
m-3
m-2
+1=
3
2-m
的解,PA⊥x轴于点A,PB⊥y轴于点B.
(1)试判断四边形PAOB的形状,并说明理由;

(2)连接AB,E为AB上的一点,EF⊥BP于点F,G为AE的中点,连接OG、FG,试问FG和OG有何数量关系?请写出你的结论并证明;

(3)若M为反比例函数y=
k
x
在第三象限内的一动点,过M作MN⊥x轴于交AB的延长线于点N,是否存在一点M使得四边形OMNB为等腰梯形?若存在,请求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案