精英家教网 > 初中数学 > 题目详情
(2012•金平区模拟)如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S1=
1
4
1
4
,Sn=
n
2(n+1)
n
2(n+1)
(用含n的式子表示).
分析:连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积性质可得S1S,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,所以S2=
2
3
×
1
2
=
1
3
,同样的道理,即可求出S3,S4…Sn
解答:解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,
∴S△AB1C1=
1
2
×1×1=
1
2

连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1
∵∠B1C1B2=90°
∴A1B1∥B2C1
∴△B1C1B2是等腰直角三角形,且边长=1,
∴△B1B2D1∽△C1AD1
∴B1D1:D1C1=1:1,
∴S1=
1
2
×
1
2
=
1
4

故答案为:
1
4

同理:B2B3:AC2=1:2,
∴B2D2:D2C2=1:2,
∴S2=
2
3
×
1
2
=
1
3

同理:B3B4:AC3=1:3,
∴B3D3:D3C3=1:3,
∴S3=
3
4
×
1
2
=
3
8

∴S4=
4
5
×
1
2
=
2
5


∴Sn=
n
2(n+1)

故答案为:
n
2(n+1)
点评:本题主要考查相似三角形的判定和性质,等腰直角三角形的定义和性质、三角形的面公式等知识点、本题关键在于作好辅助线,得到相似三角形,求出相似比,就很容易得出答案了,意在提高同学们总结归纳的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•金平区模拟)计算:
12
-(-
1
2
)0-cos30°+|
3
2
-2|

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•金平区模拟)在一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同.
(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数不小于22的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•金平区模拟)如图,已知抛物线y=ax2+bx+2与x轴交于A(-4,0)、B(1,0)两点,与y轴交于点C.
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)在抛物线的对称轴上是否存在点P,使△PBC的周长最小?若存在,请直接写出△PBC周长的最小值与点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•金平区模拟)如图,半圆O的直径AB=10,弦AC=8,过A作直线PQ,若∠PAC=∠ABC.
(1)求证:PQ是半圆O的切线;
(2)若点M从点C出发,沿线段CA向点A运动,N从点A出发,沿射线AP方向运动,两点同时出发,速度都为每秒1个单位长度,点M运动到A即停止,设运动时间为t秒.
①设△AMN的面积为S,求S与t之间的函数关系式,并求t为何值时,△AMN的面积最大,最大值是多少?
②当△AMN为等腰三角形时,求运动时间t的值.

查看答案和解析>>

同步练习册答案