精英家教网 > 初中数学 > 题目详情
如图,△OAB是边长为4+2的等边三角形,其中O是坐标原点,顶点B在y轴的正半轴上.将△OAB折叠,使点A与OB边上的点P重合,折痕与OA、AB的交点分别是E、F.如果PE∥x轴,
(1)求点P、E的坐标;
(2)如果抛物线y=-x2+bx+c经过点P、E,求抛物线的解析式.

【答案】分析:(1)求E点的坐标就要求出OP,PE的值,在直角三角形OPE中,∠POE=60°,因此OE=2OP,PE=OP,而OA=OE+AE=2OP+OP,据此可求出OP,OE,PE的长.由此求出P和E点的坐标.
(2)将P、E的坐标代入抛物线中即可求出二次函数的解析式.
解答:解:(1)设OP=x,则OE=2x,PE=x.
根据折叠的性质可得AE=PE=x,
则有OA=OE+AE=OE+PE=2x+x=4+2
∴x=2,
∴OP=2,PE=2
因此P(0,2),E(2,2);

(2)将P、E坐标代入抛物线可得:

解得:
∴抛物线的解析式为y=-x2+x+2.
点评:本题着重考查了等边三角形的性质、图形旋转变换、待定系数法求二次函数解析式等重要知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△OAB是边长为2的等边三角形,过点A的直线y=-
3
x
+m与x轴交于点E.
(1)求点E的坐标;
(2)求过A、O、E三点的抛物线解析式;
(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△OAB是边长为4+2
3
的等边三角形,其中O是坐标原点,顶点B在y轴的正半轴上.将△精英家教网OAB折叠,使点A与OB边上的点P重合,折痕与OA、AB的交点分别是E、F.如果PE∥x轴,
(1)求点P、E的坐标;
(2)如果抛物线y=-
1
2
x2+bx+c经过点P、E,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-
1
6
x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?精英家教网若能,请求出此时点A′的坐标;若不能,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB边上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A'的坐标和直线A′F所对应的函数关系式;
(2)在OB上是否存在点A′,使四边形AFA′E是菱形?若存在,请求出此时点A′的坐标;若不存在,请说明理由;
(3)当点A′在OB上运动但不与点O、B重合,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-
1
6
x2+bx+c
经过点A′和E时,求抛物线与x轴的交点的坐标.

查看答案和解析>>

同步练习册答案