精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠C=90°,斜边c=3
3
,边长为3的正方形CDEF内接于Rt△ABC,则此三角形的周长为(  )
分析:首先设AC=x,BC=y,易证得△AEF∽△ABC,然后由相似三角形的对应边成比例,可得3(x+y)=xy,又由勾股定理可得x2+y2=(3
3
2,继而可得(x+y)2-6(x+y)=27,继而求得答案.
解答:解:设AC=x,BC=y,
∵四边形CDEF是正方形,且边长为3,
∴EF=CF=3,EF∥BC,
∴△AEF∽△ABC,
EF
BC
=
AF
AC

3
y
=
x-3
x

整理得:3(x+y)=xy,
∵在Rt△ABC中,∠C=90°,斜边c=3
3

∴x2+y2=(3
3
2
∴(x+y)2-2xy=27,
∴(x+y)2-6(x+y)=27,
解得:x+y=9或x+y=-3,
故此三角形的周长为:9+3
3

故选B.
点评:此题考查了相似三角形的判定与性质、勾股定理以及正方形的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案