【题目】已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
【答案】(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=-1.
【解析】试题分析:(1)直接将x=-1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=-1是方程的根,
∴(a+c)×(-1)2-2b+(a-c)=0,
∴a+c-2b+a-c=0,
∴a-b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2-4(a+c)(a-c)=0,
∴4b2-4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a-c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=-1.
科目:初中数学 来源: 题型:
【题目】函数y=(m﹣n)x2+mx+n是二次函数的条件是( )
A. m、n是常数,且m≠0 B. m、n是常数,且m≠n
C. m、n是常数,且n≠0 D. m、n可以为任何常数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大家都知道,|3﹣(﹣1)|表示3与﹣1之差的绝对值,实际上也可理解为3和﹣1两个数在数轴上所对的两点之间的距离.试探索:
(1)求|3﹣(﹣1)|= .
(2)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为216000000度,将数据216000000用科学记数法表示为( )
A.216×106 B.21.6×107 C.2.16×108 D.2.16×109
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是( )
城市 | 北京 | 武汉 | 广州 | 哈尔滨 |
平均气温 (单位℃) | ﹣4.6 | 3.8 | 13.1 | ﹣19.4 |
A.北京 B.武汉 C.广州 D.哈尔滨
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com