精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,⊙O过CB的中点D,直线FE过点D,且FE⊥AC于E,FB切⊙O于B,精英家教网P是线段DF上一动点,过P作PN⊥AB于N,PN与⊙O交于点Q,与DB交于点M.
(1)求证:FE是⊙O的切线;
(2)若∠C=30°,AB=2,设DP=x,MN=y,求y与x之间的函数关系式,并指出自变量x的取值范围;
(3)在(2)中,当x为何值时,PQ:PN=1:5.
分析:(1)连接OD,证OD⊥EF即可.
(2)由已知可得出三角形PDM是等边三角形,因此DP=DM=x,根据AB的值,可在直角三角形ADB中,求出BD的长;在直角三角形MNB中,可用NM表示出BM的长,由此可根据BD=BM+DM求出y,x的函数关系式.
(3)本题可先设出PQ,PN的长,然后表示出PQ,PN,QN的长;根据切割线定理求出PD的表达式,即可求出PM,MN的表达式;然后将PM,MN的表达式代入(2)的函数关系式中,即可求出PM,PD即x的值.
解答:精英家教网(1)证明:连接OD,AD,则AD⊥BC;
∵D是BC的中点,
∴AC=AB,
∴∠C=∠OBD.
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODB=∠C,
∴OD∥AC.
∵EF⊥AC,
∴EF⊥OD,
∴EF是⊙O的切线.

(2)解:∵∠C=30°,
∴∠CDE=60°,∠NMB=90°-∠B=60°,
∴∠PDM=∠PMD=60°.
∴△PDM是等边三角形.
∴PD=PM=DM=x.
∵∠OBD=30°,AB=2,
∴BD=
3

∵∠OBD=30°,
∴BM=2y.
∴BD=BM+MD=2y+x=
3

∴y=-
1
2
x+
3
2
(0<x≤
3
).

(3)解:∵PQ:PN=1:5,
设PQ=a,则QN=4a,PN=5a
∵PD2=PQ•(PQ+2QM)=a•(a+8a),
∴PD=PM=3a,MN=PN-PM=2a,
根据(2)的函数关系式可得:2a=-
1
2
×3a+
3
2
,解得a=
3
7

∴x=3a=
3
3
7
点评:本题主要考查切线的判定,相似三角形的判定的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案