精英家教网 > 初中数学 > 题目详情
19.如图,
①因为∠1=∠2,所以AD∥BC,理由是内错角相等,两直线平行.
②因为AB∥DC,所以∠3=∠4,理由是两直线平行,内错角相等.
③因为AD∥BC,所以∠5=∠ADC,理由是两直线平行,内错角相等.

分析 根据平行线的判定与性质填空即可.

解答 解:①因为∠1=∠2,所以 AD∥BC,理由是内错角相等,两直线平行.
②因为AB∥DC,所以∠3=∠4,理由是两直线平行,内错角相等.
③因为AD∥BC,所以∠5=∠ADC,理由是两直线平行,内错角相等.
故答案是:①AD;BC;内错角相等,两直线平行;
②4;两直线平行,内错角相等;
③BC;两直线平行,内错角相等.

点评 本题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.先阅读下面的解题过程,然后再解答:
形如$\sqrt{m±2\sqrt{n}}$的化简,只要我们找到两个数a,b,使a+b=m,ab=n,即${({\sqrt{a}})^2}+{({\sqrt{b}})^2}$=m,$\sqrt{a}•\sqrt{b}=\sqrt{n}$,那么便有:$\sqrt{m±2\sqrt{n}}=\sqrt{{{({\sqrt{a}±\sqrt{b}})}^2}}=\sqrt{a}±\sqrt{b}({a>b})$
根据上述方法化简:
(1)$\sqrt{13-2\sqrt{42}}$.
(2)$\sqrt{7+4\sqrt{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,△ABC和△DBC都是边长为2的等边三角形.
(1)以图1中的某个点为旋转中心,旋转△DBC,就能使△DBC与△ABC重合,则满足题意的点为:B点、C点BC的中点.(写出符合条件的所有点);
(2)将△DBC沿BC方向平移得到△D1B1C1,如图2、图3所示,则四边形ABD1C1是平行四边形吗?证明你的结论;
(3)在(2)的条件下,若四边形ABD1C1为矩形,求 BB1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出2个球,请通过列表或树状图求摸出2个球都是白球的概率;
(2)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为$\frac{4}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.为了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本容量是100.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)x•x2•x-2(x≠0)
(2)-t3•(-t)4•(-t)5
(3)-12017-(-2)-2-($\frac{1}{3}$)-3÷(3.14-π)0      
(4)(-2x23+x2•x4-(-3x32
(5)(a-b)10÷(b-a)3÷(b-a)2              
(6)(1$\frac{2}{3}$)2006×(-0.6)2007

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知10x=4,10y=6,求
(1)102x+y;    
(2)103x-2y

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,我们把先作正方形ABCD的内切圆,再作这个内切圆的内接正方形A1B1C1D1.称为第一次数学操作,解下列,作正方形A1B1C1D1的内切圆,再作这个内切圆的内接正方形A2B2C2D2,称为第二次数学操作,按此规律如此下去,…,当完成第n次数学操作后,得到正方形AnBnCnDn,则$\frac{{A}_{n}{B}_{n}}{AB}$的值为(  )
A.($\frac{\sqrt{2}}{2}$)nB.($\frac{1}{2}$)nC.($\frac{\sqrt{3}}{2}$)nD.($\frac{3}{4}$)n

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1,则∠A1=32°;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠An-1BC与∠An-1CD的平分线相交于点An,要使∠An的度数为整数,则n的值最大为6.

查看答案和解析>>

同步练习册答案