精英家教网 > 初中数学 > 题目详情

阅读下列材料:
我们知道,一次函数ykxb的图象是一条直线,而ykxb经过恒等变形可化为直线的另一种表达形式:AxBxC=0(ABC是常数,且AB不同时为0).如图1,点Pmn)到直线lAxBxC=0的距离(d)计算公式是:d 

例:求点P(1,2)到直线y x的距离d时,先将y x化为5x-12y-2=0,再由上述距离公式求得d  
解答下列问题:
如图2,已知直线y=-x-4与x轴交于点A,与y轴交于点B,抛物线yx2-4x+5上的一点M(3,2).

(1)求点M到直线AB的距离.
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

(1) 6 (2)存在,P),△PAB面积的最小值为×5×

解析试题分析:(1)将y=- x-4化为4x+3y+12=0,由上述距离公式得:
d =6
∴点M到直线AB的距离为6         
(2)存在
Pxx2-4x+5),则点P到直线AB的距离为:
d
由图象知,点P到直线AB的距离最小时x>0,x2-4x+5>0
d (x )2           
∴当x 时,d最小,为          
x时,x2-4x+5=()2-4×+5= ,∴P)          
y=- x-4中,令x=0,则y=-4,∴B(0,-4)
y=0,则xy=-3。∴A(-3,0)
AB=5              
∴△PAB面积的最小值为×5×       
考点:直线与抛物线
点评:本题考查直线与抛物线,掌握直线与抛物线的性质,会求点到直线的距离

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

28、阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;
这个结论可以推广为|x1-x2|表示在数轴上数x1,x2对应点之间的距离;
在解题中,我们会常常运用绝对值的几何意义:
例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;
例2:解不等式|x-1|>2.如图,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1,3,则|x-1|>2的解为x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3.故原方程的解是x=2或x=-3.
参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为
1或-7

(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a对任意的x都成立,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
已知三个数a、b、c,我们可以用M(a,b,c)表示这三个数的平均数,用max(a,b,c)表示这三个数中最大的数.
例如:M(-2,1,5)=
-2+1+5
3
=
4
3
; max(-2,1,5)=5;max(-2,1,a)=
a(a≥1)
1(a<1)

解决下列问题:
(1)填空:①M(-3,-2,10)=
 

②max(tan30°,sin45°,cos60°)=
 

③如果max(2,2-2a,2a-4)=2,那么a的取值范围是
 

(2)如果M(2,a+1,2a)=max(2,a+1,2a),求a的值;
(3)请你根据(2)的结果,继续探究:如果M(a,b,c)=max(a,b,c),那么
 
(填a、b、c的大小关系),并证明你的结论;
(4)运用(3)的结论填空:
如果M(2a+b+2,a+2b,2a-b)=max(2a+b+2,a+2b,2a-b),那么a+b=
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•郴州)阅读下列材料:
    我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=
|A×m+B×n+C|
A2+B2


    例:求点P(1,2)到直线y=
5
12
x-
1
6
的距离d时,先将y=
5
12
x-
1
6
化为5x-12y-2=0,再由上述距离公式求得d=
|5×1+(-12)×2+(-2)|
52+(-12)2
=
21
13

    解答下列问题:
    如图2,已知直线y=-
4
3
x-4
与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
    (1)求点M到直线AB的距离.
    (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:已知方程x2+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x.
所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-3=0,化简,得y2+2y-12=0.
故所求方程为y2+2y-12=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的3倍.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:我们在学习二次根式时,式子
x
有意义,则x≥0;式子
-x
有意义,则x≤0;若式子
x
+
-x
有意义,求x的取值范围;这个问题可以转化为不等式组来解决,即求关于x的不等式组
x≥0
-x≤0
的解集,解这个不等式组得x=0.请你运用上述的数学方法解决下列问题:
(1)式子
x2-1
+
1-x2
有意义,求x的取值范围;
(2)已知:y=
x-2
+
2-x
-3
,求xy的值.

查看答案和解析>>

同步练习册答案