精英家教网 > 初中数学 > 题目详情

已知 , 如图BN∥AM , ND∥MC , 那么有

[    ]

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AB∥CD,AB=
13
CD,E是AB上一点,AE=2BE,M是腰BC的中点,连接EM并延长交DC的延长线于点F,连接DB交EF于点N.
求证:BN:ND=1:10.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线l:y=
1
3
x+b
经过点M(0,
1
4
),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),L,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),L,An+1(xn+1,0)(n为正整数),设x1=d(0<d<1).
(1)求b的值;
(2)若d=
1
2
,求经过点A1、B1、A2的抛物线的解析式;
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.
探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为 (-
b
2a
4ac-b2
4a
),对称轴x=-
b
2a

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列各个等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能从中推导出计算12+22+32+42+…+n2的公式吗?请写出你的推导过程;
(2)请你用(1)中推导出的公式来解决下列问题:
已知:如图,抛物线y=-x2+2x+3与x、y轴的正半轴分别交于点A、B,将线段OAn等分,分点从左到右依次为A1、A2、A3、A4、A5、A6、…、An-1,分别过这n-1个点作x轴的垂线依次交抛物线于点B1、B2、B3、B4、B5、B6、…、Bn-1,设△OBA1
△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面积依次为S1精英家教网S2、S3、S4、…、Sn.
①当n=2010时,求S1+S2+S3+S4+S5+…+S2010的值;
②试探究:当n取到无穷无尽时,题中所有三角形的面积和将是什么值?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京二模)已知:如图,P是线段AB的中点,线段MN经过点P,MA⊥AB,NB⊥AB.
求证:AM=BN.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)尺规作图.

要求:写出作法(用词准确精炼);保留作图痕迹(图形清晰,规范),已知:如图△ABC.
求作:△ABC的内角平分线AD.
作法:
(2)如图2,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,-----依此类推.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),…;B(2,0),B1(4,0),B2(8,0),B3(16,0),….
①观察每次变换三角形的顶点变化规律,按此变换规律,经过
6
6
次变换后,A、B的对应点坐标分别为(64,3)、(128,0).
②若按第①小题找到的规律将△OAB进行了n次变换,得到△OAnBn,推测An的坐标是
(2n,3)
(2n,3)
,Bn的坐标是
(2n+1,0)
(2n+1,0)

查看答案和解析>>

同步练习册答案