精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,CA=CB,CDAB且与OA的延长线交于点D.
(1)判断CD与⊙O的位置关系并说明理由;
(2)若∠ACB=120°,OA=2.求CD的长.
(1)CD与⊙O相切.理由如下:
如图,连接OC,
∵CA=CB,
AC
=
CB

∴OC⊥AB,
∵CDAB,
∴OC⊥CD,
∵OC是半径,
∴CD与⊙O相切.
(2)∵CA=CB,∠ACB=120°,
∴∠ABC=30°,
∴∠DOC=60°
∴∠D=30°,
∵OA=OC=2,
∴D0=4,
∴CD=
DO2-OC2
=2
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

e图所示,直线AB、CD相交于点P,点Q、E在AB上,已知:PQ=8,QE=e,sen∠BPC=
5
5
,O为射线QA上的一动点,⊙O的半径为
5
,开始时,O点与Q点重合,⊙O沿射线QA方向移动.
(1)当圆心O运动到与点E重合时,判断此时⊙O与直线CD的位置关系,交说明e的理由;
(少)设移动后⊙O与直线CD交于点l、N,若△OlN是直角三角形,求圆心O移动的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O的直经BD=6,连接CD、AO、BC,且AO与BC相交于点E.
(1)求证:CDAO;
(2)设CD=x,AO=y,求y与x之间的函数关系式,并直接写出自变量x的取值范围;
(3)请阅读下方资源链接内容.在(2)的基础上,若CD、AO的长分别为一元二次方程x2-(4m+1)x+4m2+2=0的两个实数根,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知P为⊙O外一点,PA,PB分别切⊙O于点A,B,BC为直径.求证:ACOP.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB、DE分别切⊙O于A、B、C,如果△PDE的周长为8,那么PA=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.
(1)求证:MN是半圆的切线.
(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.
(3)在(2)的条件下,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:
(1)AD=AE
(2)PC•CE=PA•BE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,A是半径为2的⊙O上的一点,P是OA延长线上的一动点,过P作⊙O的切线,切点为B,设PA=m,PB=n.
(1)当n=4时,求m的值;
(2)⊙O上是否存在点C,使△PBC为等边三角形?若存在,请求出此时m的值;若不存在,请说明理由;
(3)当m为何值时,⊙O上存在唯一点M和PB构成以PB为底的等腰三角形?并直接答出:此时⊙O上能与PB构成等腰三角形的点共有几个?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)求证:AD⊥DC;
(2)若AD=
5
,DC=2,求sin∠CAB的值以及AB的长.

查看答案和解析>>

同步练习册答案