精英家教网 > 初中数学 > 题目详情
如图,D,E,F为等边三角形ABC三边中点,AE、BF、CD交于O,DE,EF,FD为三条中位线,则图中能数出不同的直角三角形的个数是(  )
分析:根据等边三角形的“三线合一”的性质来找直角三角形.
解答:解:①∵DE,EF,FD为等边△ABC三条中位线,
∴AB=AC=BC,
∴EF
.
.
1
2
AB,ED
.
.
1
2
AC,
∴四边形CEDF是菱形,
∴EF⊥CD,
∴在菱形CEDF中有6个不同的直角三角形:Rt△CEG、Rt△CFG、Rt△DGE、Rt△DFG、Rt△EOG、Rt△FOG;
同理,在菱形ADEF、菱形BEFD中各有6个不同的直角三角形;
②∵D为等边三角形ABC三边中点,
∴CD⊥AB,
∴△ADC、△BDC、AOD、△BOD是直角三角形;
同理,以BF、AE为直角边的三角形各有4个;
综上所述,图中能数出的直角三角形由6×3+4×3=30(个);
故选C.
点评:本题考查了等边三角形的性质.解题时,充分利用了三角形中位线定理、等边三角形的“三线合一”的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.
精英家教网
(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请说明理由;
(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点
(1)求证:CD=BE,
(2)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;
(3)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄陂区模拟)如图,D、E、F分别为等边△ABC中边BC、AC、AB的中点,M是BC边上一动点(不与D点重合).△EMG是等边三角形,连接CG、DG.下列结论:①S四边形AFME=
1
2
S△ABC; ②△FBM∽△MCG;③CG∥AB; ④DG=FM.其中结论正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(1)阅读证明
①如图1,在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.
②如图2,已知点P为等边△ABC外接圆的
BC
上任意一点.求证:PB+PC=PA.
(2)知识迁移
根据(1)的结论,我们有如下探寻△ABC(其中∠A,∠B,∠C均小于120°)的费马点和费马距离的方法:
第一步:如图3,在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在
BC
上取一点P0,连接P0A,P0B,P0C,P0D.易知P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+
P0D
P0D

第三步:根据(1)①中定义,在图3中找出△ABC的费马点P,线段
AD
AD
的长度即为△ABC的费马距离.
(3)知识应用
已知三村庄A,B,C构成了如图4所示的△ABC(其中∠A,∠B,∠C均小于120°),现选取一点P打水井,使水井P到三村庄A,B,C所铺设的输水管总长度最小.求输水管总长度的最小值.

查看答案和解析>>

同步练习册答案