精英家教网 > 初中数学 > 题目详情
如图,已知菱形ABCD的两条对角线长分别为a、b,分别以每条边为直径向菱形内作半圆,则4条半圆弧围成的花瓣形的面积(阴影部分的面积)为   
【答案】分析:阴影部分可以看成4部分相等的面积所构成,每一部分是半圆的面积-直角三角形的面积.
解答:解:∵菱形ABCD的两条对角线长分别为a、b,
∴由勾股定理得菱形的边长AB=
∴S阴影=4(S半圆-SRt△)=4[π×(2-×b]
=4[π(a2+b2)-ab]
=π(a2+b2)-ab.
故答案为π(a2+b2)-ab.
点评:本题考查了扇形面积的计算,菱形的性质,阴影部分的面积可以看作是几个规则图形的面积的和或差,这是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的
EF
上,求
BC
的长度及扇形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知菱形ABCD的周长为16cm,∠ABC=60°,对角线AC和BD相交于点O,求AC和BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,已知菱形ADEF和等腰三角形ABC,AB=AC,∠BAC=54°,点B、C分别在DE、EF.(B、C分别不与E、F重合)
(1)如图1,当AE平分∠BAC时,
①求证:BD=CF;
②当AD=AB时,求∠ABD的度数;
(2)如图2,当AE不平分∠BAC时,若△ADB是一个等腰三角形,求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知菱形ABCD边长为6
3
,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.
(1)求菱形的面积;
(2)求证:EF=MN;
(3)求r1+r2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知菱形ABCD为2cm.B、C两点在以点A为圆心的
EF
上,求
BC
的长度及扇形ABC的面积.(结果保留π)

查看答案和解析>>

同步练习册答案