精英家教网 > 初中数学 > 题目详情
20、如图,AD是△ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△AEF是等腰三角形.
分析:根据角平分线的性质知∠BAD=∠CAD;然后根据已知条件“DE,DF分别垂直AB、AC于E、F”得到∠DEA=∠DFA=90°;再加上公共边AD=AD,从而证明,△ADE≌△ADF;最后根据全等三角形的对应边相等证明△AEF的两边相等,所以△AEF是等腰三角形.
解答:证明:∵AD是△ABC的平分线,
∴∠BAD=∠CAD,(3分)
又∵DE,DF分别垂直AB、AC于E,F
∴∠DEA=∠DFA=90°(6分)
又∵AD=AD,∴△ADE≌△ADF.(8分)
∴AE=AF,即△AEF是等腰三角形(10分)
点评:本题综合考查了等腰三角形的判定、全等三角形的判定与性质.解答此题时,根据全等三角形的判定定理ASA判定△ADE≌△ADF.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案