精英家教网 > 初中数学 > 题目详情
16.用正方形纸折叠:将正方形纸片的一角折叠,使点A落在点A′处,折痕为EF,再把BE折过去与EA′重合,EH为折痕.

(1)AE=A′E,BE=B′E,∠FEH=90°;
(2)将正方形的形状大小完全一样的四个角按上面的方式折叠就得到了图2如图所示的正方形EFGH,且不重合的部分也是一个正方形;
①若点A′、B′、C′、D′恰好是B′E、C′H、D′G、A′F的中点,若正方形A′B′C′D′的面积是4,则大正方形ABCD的面积是36;
②如图3,A′E=B′H=C′G=D′F=3,正方形ABCD的周长比正方形A′B′C′D′的周长的2倍小36,你能求出正方形A′B′C′D′的边长吗?

分析 (1)根据折叠的性质得到△A′EF≌△AEF,△B′EH≌△BEH,根据全等三角形的性质得到AE=A′E,BE=B′E,∠AEF=∠A′EF,∠BEH=∠B′EH,即可得到结论;
(2)①由正方形A′B′C′D′的面积是4,求得A′B′=B′C′=C′D′=A′D′=2,根据线段中点的定义得到EB′=HC′=GD′=FA′=4,根据折叠的性质得BE=BE′=4,求得AB=AE+BE=6,根据正方形的面积即可得到结论;
②设正方形A′B′C′D′的边长为x,根据题意列方程即可得到结论.

解答 解:(1)∵将正方形纸片的一角折叠,使点A落在点A′处,折痕为EF,再把BE折过去与EA′重合,EH为折痕,
∴△A′EF≌△AEF,△B′EH≌△BEH,
∴AE=A′E,BE=B′E,∠AEF=∠A′EF,∠BEH=∠B′EH,
∴∠FEH=∠FEA′+∠HEB′=$\frac{1}{2}$∠AEB=90°,
故答案为:A′E,B′E,90°;

(2)①∵正方形A′B′C′D′的面积是4,
∴A′B′=B′C′=C′D′=A′D′=2,
∵点A′、B′、C′、D′恰好是B′E、C′H、D′G、A′F的中点,
∴EB′=HC′=GD′=FA′=4,
根据折叠的性质得BE=BE′=4,
∴AB=AE+BE=6,
∴正方形ABCD的面积是36;
故答案为:36;
②设正方形A′B′C′D′的边长为x,
根据题意得:2×4x-36=4(x+3+3),
解得:x=15,
∴A′B′C′D′的边长=15.

点评 本题考查了正方形的性质,折叠的性质,正方形的面积和周长的计算,线段中点的定义,熟练掌握折叠的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50千克,茄子、豆角当天的批发价和零售价如下表所示:
品名茄子豆角
批发价(元/千克)3.03.5
零售价(元/千克)4.55.2
(1)这天该经营户批发了茄子和豆角各多少千克?
(2)当天卖完这些茄子和豆角共可盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.
(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,试判断MN,NC,BM之间的数量关系,并说明理由.
(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,CF=6,BM=3$\sqrt{2}$,求AG,MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知:在Rt△ABC中,∠ABC=90°,∠C=60°,现将一个足够大的直角三角板的直角顶点P放在斜边AC上.
(1)设三角板的两直角边分别交边AB、BC于点M、N.
①如图1当点P是AC的中点时,分别作PE⊥AB于点E,PF⊥BC于点F,在图中找到与△PEM相似的三角形并证明;
②在①的条件下,并直接写出PM与PN的数量关系.
(2)移动点P,使AP=2CP,将三角板绕点P旋转,设旋转过程中三角板的两直角边分别交边AB、BC于点M、N(PM不与边AB垂直,PN不与边BC垂直);或者三角板的两直角边分别交边AB、BC的延长线与点M、N.
③请在备用图中画出图形,判断PM与PN的数量关系,并选择其中一种图形证明你的结论;
④当△PCN是等腰三角形时,若BC=6cm,请直接写出线段BN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知如图:抛物线$y=-\frac{1}{2}{x^2}+2x+\frac{5}{2}$与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D为抛物线的顶点,过点D的对称轴交x轴于点E.
(1)如图1,连接BD,试求出直线BD的解析式;
(2)如图2,点P为抛物线第一象限上一动点,连接BP,CP,AC,当四边形PBAC的面积最大时,线段CP交BD于点F,求此时DF:BF的值;
(3)如图3,已知点K(0,-2),连接BK,将△BOK沿着y轴上下平移(包括△BOK)在平移的过程中直线BK交x轴于点M,交y轴于点N,则在抛物线的对称轴上是否存在点G,使得△GMN是以MN为直角边的等腰直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列各组整式中不是同类项的是(  )
A.3m2n与3nm2B.$-\frac{1}{4}{x^2}{y^{c+6}}$xy2与2x2+ay3x2y2
C.-5ab与-5×103abD.35与-12

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若分式$\frac{|x|-3}{{x}^{2}-9}$的值为零,则x的值为(  )
A.3B.-3C.±3D.不存在

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.当时钟指向上午10:10分,时针与分针的夹角是多少度(  )
A.115°B.120°C.105°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知y=y1+y2,其中y1与x成反比例,且比例系数为k1,y2与x2成正比例,且比例系数为k2,当x=-1时,y=0,那么k1与k2之间的数量关系是k1=k2.(用代数式表示)

查看答案和解析>>

同步练习册答案