精英家教网 > 初中数学 > 题目详情
如图6,在RtDABC中,ÐACB=90°,斜边AB上的中线CD=1DABC的周长为2+,求ABC的面积.

 

答案:
解析:

解:设AC=b  BC=a

    AB=2DC=2

    a2+b2=4

    AC+BC+AB=2+

    a+b=

    (a+b)2=6a2+b2+2ab=6

    ab=[6-4]=1

    SDABC=ab=

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•槐荫区一模)(1)已知:如图1,点A、C、D、B在同一条直线上,AC=BD,AE=BF,∠A=∠B.求证:∠E=∠F.

(2)已知:如图2,在?ABCD中,AE平分∠DAB,交CD于点E.求证:DA=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•大兴区一模)阅读下列材料:
小明遇到一个问题:已知:如图1,在△ABC中,∠BAC=120°,∠ABC=40°,试过△ABC的一个顶点画一条直线,将此三角形分割成两个等腰三角形.
他的做法是:如图2,首先保留最小角∠C,然后过三角形顶点A画直线交BC于点D.将∠BAC分成两个角,使∠DAC=20°,△ABC即可被分割成两个等腰三角形.
喜欢动脑筋的小明又继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.
他的做法是:如图3,先画△ADC,使DA=DC,延长AD到点B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB=∠ABC,因为∠CDB=2∠A,所以∠ABC=2∠A.于是小明得到了一个结论:
当三角形中有一个角是最小角的2倍时,则此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.
请你参考小明的做法继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.请直接写出你所探究出的另外两条结论(不必写出探究过程或理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC在方格中.
(1)请在方格纸上建立平面直角坐标系,使A(2,3)、C(5,2),并求出B点坐标;
(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.

(2)如图2,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.
(3)如图3,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)

查看答案和解析>>

同步练习册答案