精英家教网 > 初中数学 > 题目详情
13.如图,用计算机或图形计算器画△ABC和△A′B′C′,使得∠A和∠A′都等于给定的∠α,∠B和∠B′都等于给定的∠β,那么∠C和∠C′相等吗?对应边的比$\frac{AC}{A′C′}$,$\frac{AB}{A′B′}$,$\frac{BC}{B′C′}$相等吗?这样的两个三角形相似吗?
改变∠α,∠β的大小,再试一试.
你能由此得出什么结论?并证明你的发现.

分析 题目给出了∠A′=∠A,∠B′=∠B,由三角形相似的判定得到这两个三角形是相似的,然后利用相似的性质得到答案.

解答 解:在△ABC与△A′B′C′中,
∵∠A′=∠A,∠B′=∠B,
∴△ABC∽△A′B′C′,
∴∠C=∠C′,$\frac{AC}{A′C′}$=$\frac{AB}{A′B′}$=$\frac{BC}{B′C′}$,
∴△ABC∽△A′B′C′,
如果改变∠α,∠β的大小,结论仍然成立.

点评 本题考查了相似三角形的判定与性质;证明两个三角形相似时,一定首先思考能否应用两个角相等,两个三角形相似这一简单的方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.已知:a2+b2-2a+6b+10=0,则a2013-$\frac{1}{b}$=$\frac{4}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.在图中,梯形的个数为(  )
A.6B.9C.15D.27

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.用配方法解方程x2-6x=-1得到的方程为(  )
A.(x-3)2=8B.(x-3)2=-10C.(x+3)2=8D.(x+3)2=-10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:(-2)10+[(-2)10+2]+(-2)10×0.5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△EOC=1:5,则$\frac{BE}{EC}$的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{25}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图,D是△ABC的BC边的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且DE=DF.求证:△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列事件中,属于随机事件的是(  )
A.($\sqrt{a}$)2=aB.若a>b(ab≠0),则$\frac{1}{a}$<$\frac{1}{b}$
C.|a|•|b|=|ab|D.若m为整数,则(m+$\frac{1}{2}$)2+$\frac{7}{4}$是整数

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.先化简,再求值($\frac{1}{x-2}$+$\frac{1}{x+2}$)÷(x2-4),其中x=$\sqrt{5}$.

查看答案和解析>>

同步练习册答案