某停车场的收费标准如下:中型汽车的停车费为元/辆,小型汽车的停车费为
元/辆.现在停车场共有辆中、小型汽车,这些车共缴纳停车费元.问中、小
型汽车各有多少辆?
科目:初中数学 来源: 题型:
反比例函数y= (k为常数,k≠0)的图象是双曲线.当k>0时,双曲线两个分支分别在
一、三象限,在每一个象限内,y随x的增大而减小(简称增减性);反比例函数的图象关于
原点对称(简称对称性).
这些我们熟悉的性质,可以通过说理得到吗?
【尝试说理】
我们首先对反比例函数y=(k>0)的增减性来进行说理.
如图,当x>0时.
在函数图象上任意取两点A、B,设A(x1,),B(x2,),
且0<x1< x2.
下面只需要比较和的大小.
—= .
∵0<x1< x2,∴x1-x2<0,x1 x2>0,且 k>0.
∴<0.即< .
这说明:x1< x2时,>.也就是:自变量值增大了,对应的函数值反而变小了.
即:当x>0时,y随x的增大而减小.
同理,当x<0时,y随x的增大而减小.
(1)试说明:反比例函数y= (k>0)的图象关于原点对称.
【运用推广】
(2)分别写出二次函数y=ax2 (a>0,a为常数)的对称性和增减性,并进行说理.
对称性: ;
增减性: .
说理:
(3)对于二次函数y=ax2+bx+c (a>0,a,b,c为常数),请你从增减性的角度,简要解释为何当x=— 时函数取得最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
某市抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数
据进行处理(设所测数据是正整数),得频数分布表如下:
组 别 | 噪声声级分组 | 频 数 | 频 率 |
1 | 44.5——59.5 | 4 | 0.1 |
2 | 59.5——74.5 | 8 | 0.2 |
3 | 74.5——89.5 | 10 | 0.25 |
4 | 89.5——104.5 | b | c |
5 | 104.5——119.5 | 6 | 0.15 |
合 计 | 40 | 1.00 |
则第四小组的频率c =_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知:如图,在菱形ABCD中,∠B= 60°,把一个含60°角的三角尺与这个
菱形叠合,使三角尺60°角的顶点与点A重合,将三角尺绕点A按逆时针方向旋转 .
(1)如图1,当三角尺的两边分别与菱形的两边BC、CD相交于点E、F.
求证:CE+CF=AB;
(2)如图2,当三角尺的两边分别与菱形的两边BC、CD的延长线相交于点E、F.写出此时CE、CF、AB长度之间关系的结论.(不需要证明)
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com