精英家教网 > 初中数学 > 题目详情
(2008•乌鲁木齐)先阅读,再解答:我们在判断点(-7,20)是否在直线y=2x+6上时,常用的方法:把x=-7代入y=2x+6中,由2×(-7)+6=-8≠20,判断出点(-7,20)不在直线y=2x+6上.小明由此方法并根据“两点确定一条直线”,推断出点A(1,2),B(3,4),C(-1,6)三点可以确定一个圆.你认为他的推断正确吗?请你利用上述方法说明理由.
【答案】分析:要证明点A(1,2),B(3,4),C(-1,6)三点是否可以确定一个圆,主要验证三点是否在一条直线上.即其中一点是否满足经过另外两点的直线的解析式.
解答:解:他的推断是正确的.
因为“两点确定一条直线”,设经过A,B两点的直线解析式为y=kx+b,
由A(1,2),B(3,4),

解得
∴经过A,B两点的直线解析式为y=x+1,
把x=-1代入y=x+1中,由-1+1≠6,可知点C(-1,6)不在直线AB上,
即A,B,C三点不在同一直线上,
所以A,B,C三点可以确定一个圆.
点评:本题主要考查了函数解析式与图象上的点的关系,在图象上就一定满足函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2008•乌鲁木齐)先阅读,再解答:我们在判断点(-7,20)是否在直线y=2x+6上时,常用的方法:把x=-7代入y=2x+6中,由2×(-7)+6=-8≠20,判断出点(-7,20)不在直线y=2x+6上.小明由此方法并根据“两点确定一条直线”,推断出点A(1,2),B(3,4),C(-1,6)三点可以确定一个圆.你认为他的推断正确吗?请你利用上述方法说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年江西省上饶市余干县中考数学一模试卷(解析版) 题型:解答题

(2008•乌鲁木齐)如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省连云港市中考数学原创试卷大赛(24)(解析版) 题型:解答题

(2008•乌鲁木齐)如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年广东省茂名十中初中数学综合练习试卷(7)(解析版) 题型:解答题

(2008•乌鲁木齐)如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案