精英家教网 > 初中数学 > 题目详情
如图,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C.
(1)点A的坐标为______,点B的坐标为______,点C的坐标为______.
(2)设抛物线y=x2-2x-3的顶点为M,求四边形ABMC的面积.
(1)当y=0时,x2-2x-3=0,
解得:x1=3,x2=-1,
∴点A的坐标是(-1,0),点B的坐标是(3,0),
当x=0时,y=-3,
∴点C的坐标是(0,-3),
故答案为:(-1,0),(3,0),(0,-3);

(2)y=x2-2x-3=(x-1)2-4,
∴M(1,-4),
过M作MN⊥X轴于N,
则:ON=1,MN=4,BN=3-1=2,OA=1,OC=3,
∴四边形ABMC的面积S=S△COA+S梯形CONM+S△BNM
=
1
2
OA×OC+
1
2
×(OC+MN)×ON+
1
2
×MN×BN
=
1
2
×1×3+
1
2
×(3+4)×1+
1
2
×2×4,
=9.
答:四边形ABMC的面积是9.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),B(4,0),与y轴交于点C(0,-2).
(1)求此抛物线的解析式;
(2)若D点在此抛物线上,且ADCB,在x轴上是否存在点E,使得以A,D,E为顶点的三角形与△ABC相似?若存在,求出点E的坐标;若不存在,请说明理由;
(3)在(2)的条件下,问在x轴下方的抛物线上,是否存在点P使得△APD的面积与四边形ACBD的面积相等?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某抛物线型桥拱的最大高度为16米,跨度为40米,图示为它在坐标系中的示意图,则它对应的解析式为:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A在抛物线y=
1
4
x2上,过点A作与x轴平行的直线交抛物线于点B,延长AO,BO分别与抛物线y=-
1
8
x2相交于点C,D,连接AD,BC,设点A的横坐标为m,且m>0.
(1)当m=1时,求点A,B,D的坐标;
(2)当m为何值时,四边形ABCD的两条对角线互相垂直;
(3)猜想线段AB与CD之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示的平面直角坐标系中,有一条抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3).
(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到A、C两点距离之和最小?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,2
3
),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求过A、B、C三点的抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:
(1)a>0
(2)当-1≤x≤1时,满足|ax2+bx+c|≤1;
(3)当-1≤x≤1时,ax+b有最大值2.
求常数a、b、c.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.
(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);
(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;
(3)设△CDP的面积为S,求S关于m的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+bx-a2
(1)请你选定a、b适当的值,然后写出这条抛物线与坐标轴的三个交点,并画出过三个交点的圆;
(2)试讨论此抛物线与坐标轴交点分别是1个,2个,3个时,a、b的取值范围,并且求出交点坐标.

查看答案和解析>>

同步练习册答案