精英家教网 > 初中数学 > 题目详情
7.先化简,再求值:$\frac{a-3}{2a-4}$÷(a+2-$\frac{5}{a-2}$),其中a=$\sqrt{3}$-3.

分析 先将$\frac{a-3}{2a-4}$÷(a+2-$\frac{5}{a-2}$)进行化简,然后将a=$\sqrt{3}$-3代入求解即可.

解答 解:原式=$\frac{a-3}{2(a-2)}$÷[$\frac{{a}^{2}-4}{a-2}$-$\frac{5}{a-2}$]
=$\frac{a-3}{2(a-2)}$÷$\frac{{a}^{2}-9}{a-2}$
=$\frac{a-3}{2(a-2)}$×$\frac{a-2}{(a+3)(a-3)}$
=$\frac{1}{2(a+3)}$.
当a=$\sqrt{3}$-3时,
原式=$\frac{1}{2\sqrt{3}}$=$\frac{\sqrt{3}}{6}$.

点评 本题考查了分式的化简求值,解答本题的关键在于先将$\frac{a-3}{2a-4}$÷(a+2-$\frac{5}{a-2}$)进行化简,然后将a=$\sqrt{3}$-3代入求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么一元二次方程ax2+bx+c=m(a≠0,m为常数且m≤4)的两根之和为(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.将一副三角板按如图①的位置摆放,将△DEF绕点A(F)逆时针旋转60°后,得到如图②,测得CG=6$\sqrt{2}$,则AC长是(  )
A.6+2$\sqrt{3}$B.9C.10D.6+6$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知线段AB=20cm,直线AB上有一点C,且BC=8cm,M是线段BC的中点,则AM的长是24或16cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,设每次降价的百分率为x,则下面所列的方程中正确的是(  )
A.560(1-x)2=315B.560(1+x)2=315C.560(1-2x)2=315D.560(1-x2)=315

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD、OD.
(1)求证:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求弧$\widehat{AD}$的长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.某地中考体育测试选测项目有篮球、排球、足球三类,每人随机选择其中一类项目进行测试,则小东和小明选到同一类项目测试的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在△ABC中,AD、BE是两条中线,则S△ABP:S△EDP=(  )
A.1:2B.1:3C.1:4D.2:3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.当x=$\frac{2}{3}$时,求($\frac{1}{x+1}$-$\frac{1}{x-1}$)÷$\frac{x}{2{x}^{2}-2}$的值.

查看答案和解析>>

同步练习册答案