【题目】如图,在△ABC中,AD是BC上的中线,点E在线段AC上且EC=2AE,线段AD与线段BE交于点F,若△ABC对面积为3,则四边形EFDC的面积为__________.
【答案】
【解析】
连接CF,根据CE=2AE,△ABC的面积为3可知S△ABE=×3=1,S△CEF=×3=2,S△AEF:S△CEF=1:2,设S△AEF=S,则S△CEF=2S故S△ABF=1-S,则S△BCF=2-2S,设S△ABF=x=1-S,则S△BCF=2x=2-2S,由AD是BC边上的中线可知S△BDF=S△CDF=x,2x=x+3S,即x=3S,所以S△ABC=12S,S四边形EFDC=5S,由此可得出结论.
连接CF,
∵CE=2AE,△ABC的面积为3,
∴S△ABE=×3=1,S△BCE=×3=2,
S△AEF:S△CEF=1:2,
设S△AEF=S,则S△CEF=2S,
∴S△AFB=1-S,则S△BCF=2-2S,
设S△ABF=x=1-S,则S△BCF=2x=2-2S,
∵AD是BC边上的中线,
∴S△BDF=S△CDF=x,2x=x+3S,即x=3S,
∴S△ABC=12S,S四边形EFDC=5S,
∴.
∴S四边形EFDC== .
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,已知,,求的度数.
(1)填空,在空白处填上结果或者理由.
解:过点作,(如图)
得___________°, ( )
又因为,(已知)
所以___________°.
因为,
所以, ( )
又因为,(已知)
所以___________°,
所以___________°.
(2)请用另一种解法求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )
A. c>﹣1 B. b>0 C. 2a+b≠0 D. 9a+c>3b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分8分)某厂制作甲、乙两种环保包装盒。已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料。
(1)求制作每个甲盒、乙盒各用多少材料?
(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,MN∥OP,点A为直线MN上一定点,B为直线OP上的动点,在直线MN与OP之间且在线段AB的右方作点D,使得AD⊥BD.设∠DAB=α(α为锐角).
(1)求∠NAD与∠PBD的和;(提示过点D作EF∥MN)
(2)当点B在直线OP上运动时,试说明∠OBD﹣∠NAD=90°;
(3)当点B在直线OP上运动的过程中,若AD平分∠NAB,AB也恰好平分∠OBD,请求出此时α的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,作斜边AB上中线CD,得到第1个三角形ACD;于点E,作斜边DB上中线EF,得到第2个三角形DEF;依次作下去则第1个三角形的面积等于______,第n个三角形的面积等于______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,中,,.
(1)将向右平移个单位长度,画出平移后的;
(2)画出关于轴对称的;
(3)将绕原点旋转,画出旋转后的;
(4)在,,中,
______与______成轴对称,对称轴是______;
______与______成中心对称,对称中心的坐标是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)( )
A. 16 B. 24-4π C. 32-4π D. 32-8π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.
说明:
因为∠AGB=∠EHF(已知)
∠AGB= (依据: )
所以 ,(等量代换)
所以 (依据: )
所以∠C= ,(依据: )
又因为∠C=∠D,(已知)
所以 ,(等量代换)
所以DF∥AC(依据: )
所以∠A=∠F.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com