如图,AB∥CD,直线a交AB、CD分别于点E、F,点M在线段EF上(点M不与E、F重合),P是直线CD上的一个动点(点P不与F重合),∠AEF=n0,求∠FMP+∠FPM的度数.
∠FMP+∠FPM=180°﹣n°.
解析试题分析:由于点P的位置不能确定,故应分点P在F的左侧与右侧两种情况进行讨论,当点P在F的左侧时,由AB∥CD,利用两直线平行,同旁内角互补,可得∠AEF十∠EFC=180°,又由三角形内角和定理,即可得∠FMP+∠FPM+∠EFC=180°,则可得∠FMP+∠FPM=∠AEF;点P在F的右侧时,由AB∥CD,利用两直线平行,内错角相等,即可证得∠AEF=∠EFD,又由三角形内角和定理,即可得∠FMP+∠FPM+∠EFD=180°,则可得∠FMP+∠FPM+∠AEF=180°.
试题解析:当点P在F的左侧时,如图1所示,
∵AB∥CD,
∴∠AEF十∠EFC=180°,
∵∠FMP+∠FPM+∠EFC=180°,
∴∠FMP+∠FPM=∠AEF,即∠FMP+∠FPM=n°;
当点P在F的右侧时,如图2所示,
∵AB∥CD,
∴∠AEF=∠EFD,
∵∠FMP+∠FPM+∠EFD=180°,
∴∠FMP+∠FPM+∠AEF=180°,即∠FMP+∠FPM=180°﹣n°.
.
考点:平行线的性质.
科目:初中数学 来源: 题型:解答题
如图,EF//AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.
∵EF∥AD,
∴∠2= ( )
又∵∠1=∠2,
∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
∵∠BAC=80°,
∴∠AGD= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com