精英家教网 > 初中数学 > 题目详情

【题目】先化简,后求值

1(2a-3b)(3b2a)-a-2b2,其中:a=-2,b=3

2)[(xy+2(xy-2)-2x2y2+4÷(xy),其中x=10y=-.

【答案】1-129;(20.4

【解析】

1)利用平方差公式和完全平方公式进行化简,再把ab的值代入即可;

2)利用平方差公式化简,合并后利用多项式除以单项式法则计算得到最简结果,把xy的值代入计算即可求出值;

1)原式=4a2-9b2-a2+4ab-4b2=3a2+4ab-13b2
a=-2b=3时,原式=12-24-117=-129

2)原式=x2y2-4-2x2y2+4÷xy=xy
x=10y=-时,原式=0.4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠A=50°,点D,E分别是边AC,AB上的点(不与A,B,C重合),点P是平面内一动点(P与D,E不在同一直线上),设∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若点P在边BC上运动(不与点B和点C重合),如图(1)所示,则∠1+∠2=________

(用α的代数式表示).

(2)若点PABC的外部,如图(2)所示,则∠α,∠1,∠2之间有何关系?写出你的结论,并说明理由.

(3)当点P在边CB的延长线上运动时,试画出相应图形,标注有关字母与数字,并写出对应的∠α,∠1,∠2之间的关系式.(不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AD=3,CD=4,点ECD上,且DE=1.

(1)感知:如图①,连接AE,过点EEFAE,交BC于点F,连接AE,易证:△ADE≌△ECF(不需要证明);

(2)探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点EEFPE,交BC于点F,连接PF.求证:△PDE和△ECF相似;

(3)应用:如图③,若EFAB于点F,EFPE,其他条件不变,且△PEF的面积是6,则AP的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在4×4的正方形(每个小正方形的边长均为1)网格中,以A为顶点,其他三个顶点都在格点(网格的交点)上,且面积为2的平行四边形共有多少个?( )

A.12B.16C.24D.25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校学生志愿服务小组在学雷锋活动中购买了一批牛奶到江阴儿童福利院看望孤儿.如果分给每位儿童5盒牛奶,那么剩下18盒牛奶;如果分给每位儿童6盒牛奶,那么最后一位儿童分不到6盒,但至少能有3盒.则这个儿童福利院的儿童最少有________个,最多有________个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有下列说法:()单项式的系数、次数都是;()多项式的系数是,它是三次二项式;()单项式都是七次单项式;(4)单项式的系数分别是;(是二次单项式;(都是整式,其中正确的说法有( ).

A.B. C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,点P在优弧上.

(1)求出A,B两点的坐标;

(2)试确定经过A、B且以点P为顶点的抛物线解析式;

(3)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2

(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;

(3)x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题:

1)共抽取了多少名学生的数学成绩进行分析?

2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?

3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?

查看答案和解析>>

同步练习册答案