精英家教网 > 初中数学 > 题目详情

【题目】中,,点内一点.

1)如图1,连接,将沿射线方向平移,得到,点的对应点分别为点,连接.如果,则

2)如图2,连接,当时,求的最小值.

【答案】1;(22+2

【解析】

1)连接CD,构造矩形ACBDRtCDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;
2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当CPMN四点共线时,由CA=CBNA=NB可得CN垂直平分AB,进而求得PA+PB+PC的最小值.

如图,连接CD

∵△BCP沿射线CA方向平移,得到△DAE
BCADBC=AD
∵∠ACB=90°
∴四边形BCAD是矩形,
CD=AB=6
BP=3
DE=BP=3
BPCEBPDE
DECE
∴在RtDCE中,CE=
2)如图所示,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.那么就将PA+PB+PC的值转化为CP+PM+MN的值,连接CN,当点P落在CN上时,PA+PB+PC的值最小.

由旋转可得,△AMN≌△ABP
MN=BPPA=AM,∠PAM=60°=BANAB=AN
∴△PAM、△ABN都是等边三角形,
PA=PM
PA+PB+PC=CP+PM+MN
AC=BC=4时,AB=4
CPMN四点共线时,由CA=CBNA=NB可得CN垂直平分AB
AQ=AB=2=CQNQ=AQ=2
∴此时CN=CP+PM+MN=PA+PB+PC=2+2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某商场为了吸引顾客,制作了可以自由转动的转盘(转盘被等分成20个扇形),顾客每购买200元的商品,就能获得一次转动转盘的机会,如果转动转盘,转盘停止后指针正好对准红色、黄色或绿色区域,就可以分别获得200元、100元、50元的购物券;如果不愿意,可直接获得30元的购物券.

1)求转动一次转盘获得购物券的概率;

2)如果你在该商场消费210元,你会选择转转盘还是直接获得购物券?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列图形:已知ab,在第一个图中,可得∠1+2=180°,则按照以上规律,∠1+2+P1+…+Pn=______度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,的垂直平分线交于点,交的延长线于点

1)若,则 度;

2)如果),其余条件不变,求的度数;

3)补全规律:等腰三角形一腰的垂直平分线与 相交所成的锐角等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.
(1)求证:DE=DC;
(2)求证:AF⊥BF;
(3)当AFGF=28时,请直接写出CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线为边作正方形,再以正方形的对角线作正方形,…,依此规律,则点的坐标是( )

A. (-8,0) B. (0,8)

C. (0,8 D. (0,16)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;

(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒
个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD的面积为___________

查看答案和解析>>

同步练习册答案