8£®Èçͼ£¬½«Ò»¿éÖ±½ÇÈý½ÇÐÎÖ½°åµÄÖ±½Ç¶¥µã·ÅÔÚC£¨1£¬$\frac{1}{2}$£©´¦£¬Á½Ö±½Ç±ß·Ö±ðÓëx£¬yÖáƽÐУ¬Ö½°åµÄÁíÁ½¸ö¶¥µãA£¬BÇ¡ºÃÊÇÖ±Ïßy=kx+bÓëË«ÇúÏßy=$\frac{4}{x}$µÄ½»µã£®
£¨1£©ÇókºÍbµÄÖµ£»
£¨2£©ÉèË«ÇúÏßy=$\frac{4}{x}$ÔÚA£¬BÖ®¼äµÄ²¿·ÖΪL£¬ÈÃÒ»°Ñº¬45¡ãµÄÈý½Ç³ßµÄÖ±½Ç¶¥µãPÔÚLÉÏ»¬¶¯£¬Á½Ö±½Ç±ßʼÖÕÓë×ø±êÖáƽÐУ¬ÇÒÓëÏ߶ÎAB½»ÓÚM£¬NÁ½µã£¬Çë̽¾¿ÊÇ·ñ´æÔÚµãPʹµÃMN=$\frac{1}{2}$AB£¬Ð´³öÄãµÄ̽¾¿¹ý³ÌºÍ½áÂÛ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¡÷MPN µÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿ÈôÓУ¬ÇëÇó³öÃæ»ý×î´óÖµ¼°µãPµÄ×ø±ê£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ïȵõ½AµãµÄºá×ø±êΪ1£¬BµãµÄ×Ý×ø±êΪ$\frac{1}{2}$£¬ÔÙÀûÓ÷´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷Çó³öA£¨1£¬4£©£¬B£¨8£¬$\frac{1}{2}$£©£¬È»ºóÀûÓôý¶¨ÏµÊý·¨Çó³öÒ»´Îº¯Êý½âÎöʽ£¬´Ó¶øµÃµ½k¡¢bµÄÖµ£»
£¨2£©¼ÙÉè´æÔÚµãPʹµÃMN=$\frac{1}{2}$AB£¬Ö±ÏßABµÄ½âÎöʽΪy=-$\frac{1}{2}$x+$\frac{9}{2}$£¬ÏÈÖ¤Ã÷Rt¡÷PMN¡×Rt¡÷CABµÃµ½$\frac{PM}{AC}$=$\frac{PN}{BC}$=$\frac{MN}{AB}$=$\frac{1}{2}$£¬ÉèP£¨x£¬$\frac{4}{x}$£©£¬£¨1¡Üx¡Ü8£©£¬ÔòM£¨x£¬-$\frac{1}{2}$x+$\frac{9}{2}$£©£¬ÔòMP=-$\frac{1}{2}$x+$\frac{9}{2}$-$\frac{4}{x}$£¬ËùÒÔ2£¨-$\frac{1}{2}$x+$\frac{9}{2}$-$\frac{4}{x}$£©=$\frac{7}{2}$£¬ÕûÀíµÃ2x2-11x+16=0£¬¸ù¾ÝÅбðʽµÄÒâÒåÅжϷ½³ÌûÓÐʵÊý½â£¬ËùÒÔ²»´æÔÚµãPʹµÃMN=$\frac{1}{2}$AB£»
£¨3£©ÀûÓÃRt¡÷PMN¡×Rt¡÷CABµÃµ½$\frac{{S}_{¡÷PMN}}{{S}_{¡÷ABC}}$=£¨$\frac{-\frac{1}{2}x+\frac{9}{2}-\frac{4}{x}}{\frac{7}{2}}$£©2£¬¶øS¡÷ABC=$\frac{49}{4}$£¬ËùÒÔS¡÷PMN=£¨$\frac{9}{2}$-$\frac{1}{2}$x-$\frac{4}{x}$£©2£¬ÀûÓò»µÈʽ¹«Ê½µÃ$\frac{1}{2}$x+$\frac{4}{x}$¡Ý2$\sqrt{2}$£¬ËùÒÔµ±x=2$\sqrt{2}$ʱ£¬$\frac{1}{2}$x+$\frac{4}{x}$ÓÐ×îСֵ£¬´ËʱS¡÷PMNÓÐ×î´óÖµ£¬È»ºó°Ñµ±x=2$\sqrt{2}$´úÈë¼ÆËã¼´¿ÉµÃµ½S¡÷PMNµÄ×î´óÖµ=$\frac{113-72\sqrt{2}}{4}$£¬´ËʱPµã×ø±êΪ£¨2$\sqrt{2}$£¬$\sqrt{2}$£©£®

½â´ð ½â£º£¨1£©¡ßAC¡ÎyÖᣬBC¡ÎxÖᣬ
¶øC£¨1£¬$\frac{1}{2}$£©£¬
¡àAµãµÄºá×ø±êΪ1£¬BµãµÄ×Ý×ø±êΪ$\frac{1}{2}$£¬
¡ßµãA¡¢BÔÚË«ÇúÏßy=$\frac{4}{x}$ÉÏ£¬
¡àA£¨1£¬4£©£¬B£¨8£¬$\frac{1}{2}$£©£¬
¡ßµãA£¬BÔÚÖ±Ïßy=kx+bÉÏ£¬
¡à$\left\{\begin{array}{l}{k+b=4}\\{8k+b=\frac{1}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=\frac{9}{2}}\end{array}\right.$£»
£¨2£©²»´æÔÚµãPʹµÃMN=$\frac{1}{2}$AB£®ÀíÓÉÈçÏ£º
¼ÙÉè´æÔÚµãPʹµÃMN=$\frac{1}{2}$AB£¬Ö±ÏßABµÄ½âÎöʽΪy=-$\frac{1}{2}$x+$\frac{9}{2}$£¬
¡ßPM¡ÎyÖᣬAC¡ÎyÖᣬ
¡àPM¡ÎAC£¬
¡à¡ÏPMN=¡ÏBAC£¬
¡àRt¡÷PMN¡×Rt¡÷CAB£¬
¡à$\frac{PM}{AC}$=$\frac{PN}{BC}$=$\frac{MN}{AB}$=$\frac{1}{2}$£¬
ÉèP£¨x£¬$\frac{4}{x}$£©£¬£¨1¡Üx¡Ü8£©£¬ÔòM£¨x£¬-$\frac{1}{2}$x+$\frac{9}{2}$£©£¬
¡àMP=-$\frac{1}{2}$x+$\frac{9}{2}$-$\frac{4}{x}$£¬
¡ßAC=4-$\frac{1}{2}$=$\frac{7}{2}$£¬
¡à2£¨-$\frac{1}{2}$x+$\frac{9}{2}$-$\frac{4}{x}$£©=$\frac{7}{2}$£¬
ÕûÀíµÃ2x2-11x+16=0£¬
¡ß¡÷=£¨-11£©2-4¡Á2¡Á16=-7£¼0
¡à·½³ÌûÓÐʵÊý½â£¬
¡à²»´æÔÚµãPʹµÃMN=$\frac{1}{2}$AB£»
£¨3£©¡÷MPN µÄÃæ»ý´æÔÚ×î´óÖµ£®
¡ßRt¡÷PMN¡×Rt¡÷CAB£¬
¡à$\frac{{S}_{¡÷PMN}}{{S}_{¡÷ABC}}$=£¨$\frac{PM}{AC}$£©2=£¨$\frac{-\frac{1}{2}x+\frac{9}{2}-\frac{4}{x}}{\frac{7}{2}}$£©2£¬
¶øS¡÷ABC=$\frac{1}{2}$•$\frac{7}{2}$•£¨8-1£©=$\frac{49}{4}$£¬
¡àS¡÷PMN=£¨$\frac{9}{2}$-$\frac{1}{2}$x-$\frac{4}{x}$£©2£¬
¡ß$\frac{1}{2}$x+$\frac{4}{x}$¡Ý2$\sqrt{\frac{1}{2}x•\frac{4}{x}}$£¬¼´$\frac{1}{2}$x+$\frac{4}{x}$¡Ý2$\sqrt{2}$£¬
¡àµ±$\frac{1}{2}$x=$\frac{4}{x}$ʱ£¬¼´x=2$\sqrt{2}$ʱ£¬$\frac{1}{2}$x+$\frac{4}{x}$ÓÐ×îСֵ£¬
´ËʱS¡÷PMNÓÐ×î´óÖµ£¬
µ±x=2$\sqrt{2}$ʱ£¬S¡÷PMNµÄ×î´óÖµ=$\frac{113-72\sqrt{2}}{4}$£¬´ËʱPµã×ø±êΪ£¨2$\sqrt{2}$£¬$\sqrt{2}$£©£®

µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ºÍÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£»»áÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»»áÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊÇóÏ߶κÍÈý½ÇÐεÄÃæ»ý£»¼Çס²»µÈʽa+b¡Ý2$\sqrt{ab}$£¨a¡¢bΪÕýÊý£¬µ±a=bʱȡµÈºÅ£©£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬ÊÇÒ»¸öÕý·½ÌåÖ½ºÐµÄÕ¹¿ªÍ¼£¬ÈôÔÚÆäÖÐÈý¸öÕý·½ÐÎA¡¢B¡¢CÖзֱðÌîÈëÊʵ±µÄÊý£¬Ê¹µÃËüÃÇÕÛ³ÉÕý·½ÌåºóÏà¶ÔµÄÃæÉÏÁ½¸öÊý»¥ÎªÏà·´Êý£¬ÔòÌîÈëÕý·½ÐÎA¡¢B¡¢CÖеÄÈý¸öÊýÒÀ´ÎÊÇ£¨¡¡¡¡£©
A£®-3¡¢$-\frac{1}{2}$¡¢1B£®$-\frac{1}{2}$¡¢-3¡¢1C£®1¡¢-3¡¢$-\frac{1}{2}$D£®-3¡¢1¡¢$-\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Ìî¡°£¼¡±»ò¡°£¾¡±£®
$\sqrt{£¨-5£©^{2}}$=5£»
9µÄƽ·½¸ùÊÇ¡À3£»
$\sqrt{40}$£¼ 7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èô$\sqrt{x-2}$+£¨y+3£©2=0£¬Ôòx+yµÄÁ¢·½¸ùÊÇ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁк¯Êý£¬µ±x£¾0ʱ£¬yËæxµÄÔö´ó¶øÔö´óµÄÊÇ£¨¡¡¡¡£©
A£®y=-2xB£®y=$\frac{2}{x}$C£®y=2x-1D£®y=-x2+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èçͼ£¬¡÷ABCÓë¡÷A¡äB¡äC¡ä¹ØÓÚÖ±Ïßl¶Ô³Æ£¬¡ÏA=98¡ã£¬¡ÏC¡ä=28¡ã£¬Ôò¡ÏBµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®28¡ãB£®54¡ãC£®74¡ãD£®78¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬µ±¹âÏß´Ó¿ÕÆøÉäÈëË®ÖÐʱ£¬¹âÏߵĴ«²¥·½Ïò·¢ÉúÁ˸ı䣬Õâ¾ÍÊÇÕÛÉäÏÖÏó£®Í¼ÖСÏ1=47¡ã£¬¡Ï2=30¡ã£¬Ôò¹âµÄ´«²¥·½Ïò¸Ä±äµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®13¡ãB£®15¡ãC£®17¡ãD£®19¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬¹âÔ´PÔÚˮƽ·ÅÖõĺá¸ËABµÄÕýÉÏ·½£¬ABÔڵƹâϵÄÓ°×ÓCDÒ²³Êˮƽ״̬£¬AB=2m£¬CD=6m£¬µãPµ½CDµÄ¾àÀëÊÇ3.9m£¬ÔòABÓëCDÖ®¼äµÄ¾àÀëÊÇ£¨¡¡¡¡£©
A£®2.6mB£®2mC£®1.3mD£®1m

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªAB=5¡¢BC=12¡¢AC=13£¬¡ÏABC=90¡ã£¬ÔòµãBµ½ACµÄ¾àÀëΪ$\frac{60}{13}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸