精英家教网 > 初中数学 > 题目详情

⊙O的半径是5,P是圆内一点,且OP=3,则过点P的最长弦是________,最短弦是________.

答案:10,8
解析:

10,8


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径是5,P是⊙O外一点,PO=8,∠OPA=30°,求AB和PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30°,则AB=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沙湾区模拟)已知⊙O1的半径是2cm,⊙O2的半径是3cm,若这两圆相交,则把它们的圆心距d的取值范围在数轴上表示,应该是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O的半径是6cm,P是⊙O外一点,则OP的长可能是(  )

查看答案和解析>>

科目:初中数学 来源:2012年山东省青岛市中考数学调研试卷(解析版) 题型:解答题

同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos∠AOB=Rcos×120°=Rcos60°,
AM=OAsin∠AOM=Rsin∠AOB=Rsin×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=AB×OM=×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
a(h1+h2+h3)=3R2sin60°cos60°
即:×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=______
正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=______
正n边形(半径是R)内任意一点P到各边距离之和  h1+h2+…+hn=______.

查看答案和解析>>

同步练习册答案