精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).
(1)求此抛物线的解析式;
(2)若此抛物线的顶点为P,将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO′C′.
①当O′C′∥CP时,求α的大小;
②△BOC在第一象限内旋转的过程中,当旋转后的△BO′C′有一边与BP重合时,求△BO′C′不在BP上的顶点的坐标.
精英家教网精英家教网
分析:(1)将A、C的坐标代入抛物线的解析式中,联立抛物线的对称轴方程,即可求得待定系数的值,进而确定抛物线的解析式.
(2)①根据(1)题得到的抛物线解析式,易求得B、P的坐标,根据坐标系两点间的距离公式可求得CP、BC、BP的长,通过勾股定理的逆定理可证得△BCP是Rt△,且以C为直角顶点,若O′C′∥CP,那么O′必在线段BC上,所以旋转角即为∠OBC,根据B、C的坐标,易得∠OBC=∠OCB=45°,由此得解.
②此题应分两种情况考虑:
1)BC′与BP重合,此时O′为所求点.过O′作x轴的垂线,设垂足为D,在①中已证得∠CBO=∠C′BO′=45°,这两个等角同时减去∠CBO′后可得到∠PBC=∠O′BD,即可证得△PBC∽△O′BD,根据PC、BC的比例关系,可求得O′D、BD的比例关系,进而可由勾股定理和O′B(即OB)的长求出O′D、BD的长,即可得到点O′的坐标;
2)当BO′与BP重合时,C′为所求的点.可过B作直线BE⊥x轴,过C′作C′E⊥BE于E,按照1)的思路,可证△EBC′∽△CBP,同样能得到C′E、BE的比例关系,进而由勾股定理出这两条线段的长,即可得到点C′的坐标.
解答:解:(1)由题意得
-
b
2a
=1
a-b+c=0
c=3

解得
a=-1
b=2
c=3

所以,此抛物线的解析式为y=-x2+2x+3;

精英家教网(2)①如图,
顶点P为(1,4),CP=
12+12
=
2
,BC=
32+32
=3
2

BP=
22+42
=2
5

又因为CP2+BC2=PB2
所以∠PCB=90°.
又因为O′C′∥CP,
所以O′C′⊥BC,
所以点O′在BC上,
所以α=45°.
②如备用图1,
精英家教网当BC′与BP重合时,过点O′作O′D⊥OB于D.
因为∠PBC+∠CBO′=∠CBO′+∠ABO′=45°,
所以∠ABO′=∠PBC.
则△DBO′∽△CBP,
所以
BD
BC
=
O′D
PC

所以
BD
3
2
=
O′D
2

所以BD=3O′D.
设O′D=x,则BD=3x,根据勾股定理,得x2+(3x)2=32
解得x=
3
10
10

所以BD=
9
10
10

所以点O′的坐标为(3-
9
10
10
3
10
10
).
如备用图2,
精英家教网当BO′与BP重合时,过点B作x轴的垂线BE,过点C′作C′E⊥BE于E,
因为∠PBE+∠EBC′=∠PBE+∠CBP=45°,
所以∠EBC′=∠PBC.
所以△EBC′∽△CBP,
所以
BE
BC
=
C′E
PC

所以
BE
3
2
=
C′E
2

所以BE=3C′E.
设C′E为y,则BE=3y,根据勾股定理,
y2+(3y)2=(3
2
)2

解得y=
3
5
5

所以BE=
9
5
5

所以C′的坐标为(3+
3
5
5
9
5
5
).
点评:此题考查了二次函数解析式的确定、直角三角形的判定、图象的旋转变换、相似三角形的判定和性质、勾股定理的应用等知识.在(2)②中,能够通过辅助线正确的构建与所求相关的出相似三角形是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案