【题目】(1)先化简,再求值:其中,a是方程x2+3x+1=0的根.
(2)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和(5,0),试求该抛物线的表达式.
【答案】(1),
;(2)y=﹣
x2+2x+
.
【解析】
(1)先把分子分母能因式分解的进行因式分解,然后进行计算化简,再根据一元二次方程解的定义求出a2+3a=-1,整体代入即可;
(2)利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(1,0),于是可设抛物线的解析式为y=a(x+1)(x5),然后把(1,4)代入求出a即可.
(1)原式
,
∵a是方程x2+3x+1=0的根,
∴a2+3a+1=0,即a2+3a=-1,
原式=;
(2)∵抛物线的对称轴为直线x=2,抛物线与x轴的一个交点坐标为(5,0),
∴抛物线与x轴的另一个交点坐标为(﹣1,0),
∴设抛物线的解析式为y=a(x+1)(x﹣5),
把(1,4)代入得4=a×2×(﹣4),
解得a=,
∴抛物线的解析式为y=(x+1)(x﹣5)=
.
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写y与x函数关系式,并求出自变量x的取值范围
(2)当降价多少元时,每星期的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:
(1)求抛物线的解析式;
(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长;
(3)点F在抛物线上运动,是否存在点F,使△BFC的面积为6,如果存在,求出点F的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.
已知:如图,⊙O及⊙O上一点P.
求作:过点P的⊙O的切线.
作法:如图,
①作射线OP;
②在直线OP外任取一点A,以点A为圆心,AP为半径作⊙A,与射线OP交于另一点B;
③连接并延长BA与⊙A交于点C;
④作直线PC;
则直线PC即为所求.
根据小元设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:∵ BC是⊙A的直径,
∴∠BPC=90°(____________)(填推理的依据).
∴OP⊥PC.
又∵OP是⊙O的半径,
∴PC是⊙O的切线(____________)(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ACB中,∠C=90°,以点A为中心,分别将线段AB, AC 逆时针旋转60°得到线段AD, AE,连接DE,延长DE交CB于点F.
(1)如图1,若∠B=30°,∠CFE的度数为_________;
(2)如图2,当30°<∠B<60°时,
①依题意补全图2;
②猜想CF与AC的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有( )
A.3个B.2个C.1个D.0个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4;E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠DCE的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2﹣
x﹣2与x轴交于A、B两点(A点在B点的左边),与y轴交于点C.点P在抛物线上,点Q在抛物线的对称轴上.若以BC为边,以点B、C、P、Q为顶点的四边形是平行四边形,求P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】飞机着陆后滑行的距离y(单位:m)关于滑行时间以(单位:)的函数解析式是y=6t﹣t2.在飞机着陆滑行中,滑行最后的150m所用的时间是( )s.
A.10B.20C.30D.10或30
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com