精英家教网 > 初中数学 > 题目详情
11.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,$\frac{AD}{AB}$=$\frac{1}{2}$,△CEF的面积为S1,△AEB的面积为S2,则$\frac{{S}_{1}}{{S}_{2}}$的值等于$\frac{1}{16}$.

分析 首先根据$\frac{AD}{AB}$=$\frac{1}{2}$设AD=BC=a,则AB=CD=2a,然后利用勾股定理得到AC=$\sqrt{5}$a,然后根据射影定理得到BC2=CE•CA,AB2=AE•AC从而求得CE=$\frac{\sqrt{5}a}{5}$,AE=$\frac{4\sqrt{5}a}{5}$,得到$\frac{CE}{AE}$=$\frac{1}{4}$,利用△CEF∽△AEB,求得$\frac{{S}_{1}}{{S}_{2}}$=($\frac{CE}{AE}$)2=$\frac{1}{16}$.

解答 解:∵$\frac{AD}{AB}$=$\frac{1}{2}$,
∴设AD=BC=a,则AB=CD=2a,
∴AC=$\sqrt{5}$a,
∵BF⊥AC,
∴△CBE∽△CAB,△AEB∽△ABC,
∴BC2=CE•CA,AB2=AE•AC
∴a2=CE•$\sqrt{5}$a,2a2=AE•$\sqrt{5}$a,
∴CE=$\frac{\sqrt{5}a}{5}$,AE=$\frac{4\sqrt{5}a}{5}$,
∴$\frac{CE}{AE}$=$\frac{1}{4}$,
∵△CEF∽△AEB,
∴$\frac{{S}_{1}}{{S}_{2}}$=($\frac{CE}{AE}$)2=$\frac{1}{16}$,
故答案为:$\frac{1}{16}$.

点评 本题考查了矩形的性质及相似三角形的判定,能够牢记射影定理的内容对解决本题起到至关重要的作用,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造平行四边形PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.
(1)直接写出当点C运动到线段OB的中点时,求t的值及点E的坐标.
(2)当点C在线段OB上运动时,四边形ADEC的面积为S.
①求证:四边形ADEC为平行四边形.
②写出s与t的函数关系式,并求出t的取值范围.
(3)是否存在某一时刻,使OC是PC的一半?若存在,求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
(1)-23+$\frac{1}{3}$(2005+3)0-(-$\frac{1}{3}$)-2
(2)tm+1•t+(-t)2•tm(m为整数)
(3)(x-3)(x2-9)(3+x)
(4)(2a-b-3)(2a+b-3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在矩形ABCD中,E是BC上一点,且AE=BC,DF⊥AE,垂足是F,连接DE.求证:(1)DF=AB;(2)DE是∠FDC的平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下面四个几何体中,俯视图是圆的几何体共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.
(1)求y与x的函数关系式,并写出自变量x的取值范围;
(2)顾客一次性购买多少件时,该网店从中获利最多?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.4的平方根是(  )
A.±16B.±2C.-2D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某学校在暑假期间安排了“心怀感恩•孝敬父母”的实践活动,倡导学生在假期中多帮父母干家务.开学以后,校学生会的老师们在学校随机抽取了部分学生,就暑假期间“平均每天帮助父母干家务所用时长”进行了调查,以下是根据相关数据绘制的统计图的一部分(每段时长均含最小值,不含最大值):

根据上述信息,回答下列问题:
(1)在本次随机抽取的样本中,调查的学生人数是200人;
(2)补全扇形统计图,补全频数分布直方图;
(3)如果该校共有学生3000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?并给出一条合理化建议.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.在实数$-\frac{2}{3}$,$\sqrt{7}$,0,-$\frac{π}{3}$中,最小的实数是(  )
A.-$\frac{2}{3}$B.$\sqrt{7}$C.0D.-$\frac{π}{3}$

查看答案和解析>>

同步练习册答案