精英家教网 > 初中数学 > 题目详情
如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.

【答案】分析:(1)根据BE=CF得到BF=CE,又∠A=∠D,∠B=∠C,所以△ABF≌△DCE,根据全等三角形对应边相等即可得证;
(2)根据三角形全等得∠AFB=∠DEC,所以是等腰三角形.
解答:(1)证明:∵BE=CF,
∴BE+EF=CF+EF,
即BF=CE.
又∵∠A=∠D,∠B=∠C,
∴△ABF≌△DCE(AAS),
∴AB=DC.

(2)解:△OEF为等腰三角形
理由如下:∵△ABF≌△DCE,
∴∠AFB=∠DEC,
∴OE=OF,
∴△OEF为等腰三角形.
点评:本题主要考查三角形全等的判定和全等三角形对应角相等的性质及等腰三角形的判定;根据BE=CF得到BF=CE是证明三角形全等的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,点D、E在BC上,BD=EC,∠1=∠2,求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点E、F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点E、F在BC上,∠B=∠C,AB=DC,且BE=CF.
(1)求证:AF=DE.
(2)判断△OEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在正方形ABCD中:
(1)已知:如图①,点E、F分别在BC、CD上,且AE⊥BF,垂足为M,求证:AE=BF.
(2)如图②,如果点E、F、G分别在BC、CD、DA上,且GE⊥BF,垂足M,那么GE、BF相等吗?证明你的结论.
(3)如图③,如果点E、F、G、H分别在BC、CD、DA、AB上,且GE⊥HF,垂足M,那么GE、HF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点D、E在BC上,AB=AC,AD=AE.BD和CE有怎样的关系?请说明理由.

查看答案和解析>>

同步练习册答案